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Background

Why develop data-driven models of soft materials?

Advanced applications in biomechanics

Personalized surgery
Medical device and procedure design
Thorough investigation of internal mechanisms
· · ·

Soft robotics

Soft tissues and rubbers are nonlinear and undergo large deformations

Traditional ’closed-form’ material models lack flexibility

No consensus on the choice of the best model

=⇒ Develop data-driven constitutive models of soft materials

But what about physics-based constraints?

Objectivity
Thermodynamic consistency
Polyconvexity
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Physics-constrained data-driven models

Imposing physics-based constraints has several advantages:

Physically realistic predictions

Prevents overfitting

Better extrapolation

Fewer training data points required → ”Learning from physics”

Better integration into Newton-type solvers like FEM

Choices for imposing physics-based constraints:

Penalty methods

Special loss functions

Exact methods

Adherence to physics everywhere, not just on training region
Guaranteed results
Simpler loss function =⇒ fewer computations
Better training due to simpler loss surface
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Recent physics-informed data-driven models of hyperelasticity

Imposing physics-based constraints by design:

Constitutive Artificial Neural Networks (CANN)

Input Convex Neural Networks (ICNN)

Neural Ordinary Differential Equations (NODE)
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Goals

Benchmark the models with experimental stress-stretch data

Rubber → man-made material
Uniaxial Tension (UT)
Equibiaxial Tension (ET)
Pure Shear (PS)

Skin → biological material
Strip biaxial X (SX)
Equibiaxial (EB)
Strip biaxial Y (SY)

Benchmarks considered:

Training with rubber data

Training with skin data

Second derivatives of strain energy

Model efficiency

Extrapolation
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Constitutive Artificial Neural Networks (CANN)

A century of work on constitutive material models
Generalize widely used constitutive forms
Reverse-engineer a strain energy function that is polyconvex by design
Map Ii (F) → Ψ(F) with CANNs and use Ψ(F) to calculate the stress
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Input Convex Neural Networks (ICNN)

(f ◦ g)(x) is convex if f is convex and g is convex and non-decreasing
Use this with Feed Forward Neural Networks (FFNN)
Use softplus activation functions with non-negative weights
Map Ii (F) → Ψ(F) with ICNNs and use Ψ(F) to calculate the stress
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Neural Ordinary Differential Equations (NODE)

NODEs are defined as the solutions of an ODE
Solution trajectories of an ODE never intersect =⇒ NODEs are monotonic operators
∂f (x)/∂x is monotonic ⇐⇒ f (x) is convex
Map Ii (F) → ∂Ψ(F)/∂Ii with NODEs and use ∂Ψ(F)/∂Ii to calculate the stress

F
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...

ω
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x 2
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Training with rubber data
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Training with rubber data
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Training with porcine skin data
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Training with porcine skin data
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Second derivatives of strain energy (rubber)
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Second derivatives of strain energy (skin)
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Model efficiency (rubber)
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Model efficiency (skin)
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Extrapolation (rubber)
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Extrapolation (skin)
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Conclusions

All three models capture the training data almost perfectly

Show some extrapolation capacity

Second derivatives of strain energy are different

The models show the expected trade-off in the number of parameters

The methods are deemed sufficient to model the hyperelastic behavior of skin and rubber
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Thank you!

V. Tac, K. Linka, F.S. Costabal, E. Kuhl, A. Buganza Tepole, ”Benchmarks for physics-informed
data-driven hyperelasticity”, arXiv:2301.10714, 2023
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