Benchmarks for Physics-Informed Data-Driven Hyperelasticity Workshop on Establishing Benchmarks for Data-Driven Modeling of Physical Systems

Vahidullah Tac

Kevin Linka, Francisco Sahli Costabal, Ellen Kuhl, Adrian Buganza Tepole

Purdue University

April 2023

- Advanced applications in biomechanics
 - Personalized surgery
 - Medical device and procedure design
 - Thorough investigation of internal mechanisms
 - • •
- Soft robotics
- Soft tissues and rubbers are nonlinear and undergo large deformations
- Traditional 'closed-form' material models lack flexibility
- No consensus on the choice of the best model

- Advanced applications in biomechanics
 - Personalized surgery
 - Medical device and procedure design
 - Thorough investigation of internal mechanisms
 - • •
- Soft robotics
- Soft tissues and rubbers are nonlinear and undergo large deformations
- Traditional 'closed-form' material models lack flexibility
- No consensus on the choice of the best model
- \implies Develop data-driven constitutive models of soft materials

- Advanced applications in biomechanics
 - Personalized surgery
 - Medical device and procedure design
 - Thorough investigation of internal mechanisms
 - • •
- Soft robotics
- Soft tissues and rubbers are nonlinear and undergo large deformations
- Traditional 'closed-form' material models lack flexibility
- No consensus on the choice of the best model
- \implies Develop data-driven constitutive models of soft materials
 - But what about physics-based constraints?

- Advanced applications in biomechanics
 - Personalized surgery
 - Medical device and procedure design
 - Thorough investigation of internal mechanisms
 - • •
- Soft robotics
- Soft tissues and rubbers are nonlinear and undergo large deformations
- Traditional 'closed-form' material models lack flexibility
- No consensus on the choice of the best model
- \implies Develop data-driven constitutive models of soft materials
 - But what about physics-based constraints?
 - Objectivity
 - Thermodynamic consistency
 - Polyconvexity

Imposing physics-based constraints has several advantages:

- Physically realistic predictions
- Prevents overfitting
- Better extrapolation
- Fewer training data points required \rightarrow "Learning from physics"
- Better integration into Newton-type solvers like FEM

Imposing physics-based constraints has several advantages:

- Physically realistic predictions
- Prevents overfitting
- Better extrapolation
- Fewer training data points required \rightarrow "Learning from physics"
- Better integration into Newton-type solvers like FEM

Imposing physics-based constraints has several advantages:

- Physically realistic predictions
- Prevents overfitting
- Better extrapolation
- Fewer training data points required \rightarrow "Learning from physics"
- Better integration into Newton-type solvers like FEM

- Penalty methods
 - Special loss functions

Imposing physics-based constraints has several advantages:

- Physically realistic predictions
- Prevents overfitting
- Better extrapolation
- Fewer training data points required \rightarrow "Learning from physics"
- Better integration into Newton-type solvers like FEM

- Penalty methods
 - Special loss functions
- Exact methods

Imposing physics-based constraints has several advantages:

- Physically realistic predictions
- Prevents overfitting
- Better extrapolation
- Fewer training data points required \rightarrow "Learning from physics"
- Better integration into Newton-type solvers like FEM

- Penalty methods
 - Special loss functions
- Exact methods
 - Adherence to physics everywhere, not just on training region
 - Guaranteed results
 - \bullet Simpler loss function \implies fewer computations
 - Better training due to simpler loss surface

Recent physics-informed data-driven models of hyperelasticity

Imposing physics-based constraints by design:

Recent physics-informed data-driven models of hyperelasticity

Imposing physics-based constraints by design:

- Constitutive Artificial Neural Networks (CANN)
- Input Convex Neural Networks (ICNN)
- Neural Ordinary Differential Equations (NODE)

Goals

Benchmark the models with experimental stress-stretch data

- $\bullet \ \mathsf{Rubber} \to \mathsf{man-made} \ \mathsf{material}$
 - Uniaxial Tension (UT)
 - Equibiaxial Tension (ET)
 - Pure Shear (PS)

- (日)

< ∃⇒

3

Goals

Benchmark the models with experimental stress-stretch data

- $\bullet \ \mathsf{Rubber} \to \mathsf{man-made} \ \mathsf{material}$
 - Uniaxial Tension (UT)
 - Equibiaxial Tension (ET)
 - Pure Shear (PS)
- $\bullet \ {\sf Skin} \to {\sf biological} \ {\sf material}$
 - Strip biaxial X (SX)
 - Equibiaxial (EB)
 - Strip biaxial Y (SY)

э

Goals

Benchmark the models with experimental stress-stretch data

- $\bullet \ \mathsf{Rubber} \to \mathsf{man-made} \ \mathsf{material}$
 - Uniaxial Tension (UT)
 - Equibiaxial Tension (ET)
 - Pure Shear (PS)
- $\bullet \ {\sf Skin} \to {\sf biological} \ {\sf material}$
 - Strip biaxial X (SX)
 - Equibiaxial (EB)
 - Strip biaxial Y (SY)

Benchmarks considered:

- Training with rubber data
- Training with skin data
- Second derivatives of strain energy
- Model efficiency
- Extrapolation

э

Constitutive Artificial Neural Networks (CANN)

- A century of work on constitutive material models
- Generalize widely used constitutive forms
- Reverse-engineer a strain energy function that is polyconvex by design
- Map $I_i(\mathbf{F}) \rightarrow \Psi(\mathbf{F})$ with CANNs and use $\Psi(\mathbf{F})$ to calculate the stress

Input Convex Neural Networks (ICNN)

- $(f \circ g)(x)$ is convex if f is convex and g is convex and non-decreasing
- Use this with Feed Forward Neural Networks (FFNN)
- Use softplus activation functions with non-negative weights
- Map $I_i(\mathbf{F}) \rightarrow \Psi(\mathbf{F})$ with ICNNs and use $\Psi(\mathbf{F})$ to calculate the stress

Neural Ordinary Differential Equations (NODE)

- NODEs are defined as the solutions of an ODE
- Solution trajectories of an ODE never intersect \implies NODEs are monotonic operators
- $\partial f(x)/\partial x$ is monotonic $\iff f(x)$ is convex
- Map $I_i(\mathbf{F}) \rightarrow \partial \Psi(\mathbf{F}) / \partial I_i$ with NODEs and use $\partial \Psi(\mathbf{F}) / \partial I_i$ to calculate the stress

Training with rubber data

Training with rubber data

< ∃→

æ

Training with porcine skin data

Vahid Tac

Benchmarks for Physics-Informed Data-Driven Hyperelas

11 / 20

Training with porcine skin data

Vahid Tac

Benchmarks for Physics-Informed Data-Driven Hyperelas

April 2023

∃⇒

Second derivatives of strain energy (rubber)

Benchmarks for Physics-Informed Data-Driven Hyperelas

Second derivatives of strain energy (skin)

Vahid Tac

Benchmarks for Physics-Informed Data-Driven Hyperelas

Model efficiency (rubber)

< ∃→

→

Extrapolation (rubber)

(B)

Conclusions

- All three models capture the training data almost perfectly
- Show some extrapolation capacity
- Second derivatives of strain energy are different
- The models show the expected trade-off in the number of parameters
- The methods are deemed sufficient to model the hyperelastic behavior of skin and rubber

Thank you!

V. Tac, K. Linka, F.S. Costabal, E. Kuhl, A. Buganza Tepole, "Benchmarks for physics-informed data-driven hyperelasticity", arXiv:2301.10714, 2023