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Abstract
Data-driven methods have changed the way we understand and model materials. However, while providing unmatched
flexibility, these methods have limitations such as reduced capacity to extrapolate, overfitting, and violation of physics
constraints. Recently, frameworks that automatically satisfy these requirements have been proposed. Here we review, extend,
and compare three promising data-driven methods: Constitutive Artificial Neural Networks (CANN), Input Convex Neural
Networks (ICNN), and Neural Ordinary Differential Equations (NODE). Our formulation expands the strain energy potentials
in terms of sums of convex non-decreasing functions of invariants and linear combinations of these. The expansion of the
energy is shared across all three methods and guarantees the automatic satisfaction of objectivity, material symmetries, and
polyconvexity, essential within the context of hyperelasticity. To benchmark the methods, we train them against rubber and
skin stress–strain data. All three approaches capture the data almost perfectly, without overfitting, and have some capacity to
extrapolate. This is in contrast to unconstrained neural networks which fail to make physically meaningful predictions outside
the training range. Interestingly, the methods find different energy functions even though the prediction on the stress data is
nearly identical. The most notable differences are observed in the second derivatives, which could impact performance of
numerical solvers. On the rich data used in these benchmarks, the models show the anticipated trade-off between number of
parameters and accuracy. Overall, CANN, ICNN and NODE retain the flexibility and accuracy of other data-driven methods
without compromising on the physics. These methods are ideal options to model arbitrary hyperelastic material behavior.

Keywords Physics-informed machine learning · Polyconvexity · Nonlinear mechanics · Neural networks · Constitutive
models

Introduction

The frontier of biomedical engineering applications such
as personalized surgery requires accurate mathematical
models of material-specific behavior [1]. Similarly, human-
engineered systems based on soft materials also necessitate
predictive simulations with high precision [2]. The materials
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for these applications are extremely nonlinear and undergo
large deformations, e.g. rubber and skin. Yet, despite decades
of effort developing constitutive equations for these mate-
rials, there still isn’t a definitive model for them due to
inherent limitations of expert-constructed models [3]. Tra-
ditional material modeling restricts the prediction of the
mechanical response to a narrowset of functional terms,mak-
ing it nearly impossible to fully capture the data. On the other
hand, data-driven methods such as neural networks are uni-
versal approximators that can fit mechanical behavior data of
complex response almost perfectly [4, 5]. Data-driven meth-
ods, on the other hand, have their own drawbacks such as lack
of explainability, overfitting, and difficulty in extrapolation
to unseen strain states outside the convex hull of the training
data. Considering the response of rubbers and many biologi-
calmaterials as hyperelastic, themechanical response is fully
specified by a scalar potential that has to satisfy the con-
ditions of objectivity and polyconvexity [6]. These physics
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constraints are crucial for enabling robust large-scale sim-
ulations, extrapolate from data, and avoid over-fitting [7].
Yet, off-the-shelf machine learning tools cannot a priori sat-
isfy these conditions. We review and refine three very recent
developments in physics-informedmachine learning that aim
at embedding the objectivity, material symmetries, and poly-
convexity constraints as part of the formulation such that they
can be satisfied a priori. The methods we consider are three:
Constitutive Artificial Neural Networksmodels (CANN) [8],
Neural Ordinary Differential Equations constitutive models
(NODE) [9], and Input Convex Neural Network constitutive
models (ICNN) [10–12].

Characterizing nonlinear materials like rubber and skin
involves testing them under a wide set of deformation modes
such as uniaxial, biaxial, shear, and sometimes triaxial defor-
mation. The resulting data collected from these tests are
stress–strain curves. The direct approach to leveragemachine
learning on these data is to directly map between strains and
stresses [13]. One problem with this strategy is that objec-
tivity and material symmetries are not necessarily preserved.
One way of fixing this issue has been to augment the data
with superimposed arbitrary rotations [10, 14]. For closed-
form constitutive models, fulfilling objectivity and material
symmetries has not been a major hurdle. Experts develop
strain energies in terms of invariants of the deformation to sat-
isfy these requirements by default [15, 16].Machine learning
methods along these lines have also been proposed [17–20].

The challenge of imposing polyconvexity in data-driven
methods is more difficult to address. Polyconvexity of the
strain energy (with additional growth conditions) is a suffi-
cient condition for the existence of solutions for boundary
value problems in hyperelasticity [21]. Polyconvexity is
a flexible framework, compatible with unstable material
behavior like buckling. This is in contrast with more restric-
tive notions like convexity of the strain energywith respect to
the deformation gradient, which can violate objectivity [22].
Laxer conditions such as rank-one convexity are weaker than
polyconvexity and not sufficient for the existence of global
minimizers of the strain energy [23]. Many expert models
are based on the notion of polyconvexity (but there are also
many examples of popular models which might violate this
condition [24]). Different notions of convexity have been
considered within data-driven frameworks, but the majority
have opted for adding the constraint as a penalty through the
loss function [18]. Imposing convexity through the loss func-
tion has had some success but faces the challenge of carefully
balancing between imposing the constraint and achieving a
higher accuracy [7, 25]. Another data-driven approach for
modeling arbitrary materials is to select the best model out
of a wide library of available models [26, 27]. CANN, ICNN
andNODEmodels are recently developed data-driven frame-
works that automatically satisfy the polyconvexity condition
[8–10].

CANNs are a newmethod for automated model discovery
that borrow their architecture from traditional feed-forward
neural networks but use activation functions that have been
used previously in expert-constructed models and that pre-
serve convexity. They also prune the connections between
the inputs and subsequent nodes such that the final result is
a polyconvex strain energy that encompasses a large fam-
ily of existing closed-form hyperelastic models [8]. ICNNs
are a broader class of feed-forward neural networks that
can be used to construct convex function by using convex
activation functions and positive weights [28]. ICNN con-
stitutive models build convex functions of invariant inputs
[10–12]. Different ICNN models in the literature introduce
particular choices for the family of functions that can be
interpolated. NODEs tackle the problem differently by lever-
aging themonotonicity of trajectories of ordinary differential
equations (ODEs) in a single variable to interpolate monotic
functions associated with derivatives of a strain energy
rather than the energy directly [9]. Unlike other approaches,
CANNs, ICNNs, and NODEs have physics at the core of
the formulation to generate constitutive models that satisfy
objectivity and polyconvexity a priori. Yet, there is a gap in
our understanding of how these different methods perform
on benchmark datasets, and a general need to benchmark
machine learning methods in computational mechanics [29,
30].

Rubber modeling was the center of attention for large
deformation hyperelasticity in the past century, with tens
of constitutive models proposed [31]. Recently, advances in
soft robotics has renewed the interest in developing improved
high-fidelity simulations of soft robots made of rubbers and
other elastomers. For example, applications that aim at pro-
duce complex motion such as tentacle grippers, walking soft
robots, and rehabilitation soft exoskeletons [32], all require
precise modeling of the material response.

Soft tissues made of collagen have remarkable mechan-
ical properties. They show exponential-like stress–strain
response and anisotropy. These nonlinearities allow tissues
like skin to protect us against environmental harm while
allowing interaction and movement [33]. The development
of constitutive models for soft tissues, and skin in particu-
lar, dates to the seminal work by Lanir and Fung [34, 35],
and has resulted in a long list of strain energy functions pro-
posed over the past five decades [3]. New models are being
proposed even today [36, 37]. Despite the rich literature on
skin and soft tissue modeling, the complexity of the material
response in these materials has prevented the emergence of
a categorically superior constitutive model.

The manuscript is organized as follows. In the Methods
section we first review the basic equations that describe the
mechanical behavior of hyperelastic materials with emphasis
on strain energy function expansions that satisfy objectivity
andpolyconvexity requirements. Then,we showhowCANN,
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ICNN andNODE architectures can be used to creatematerial
models within the considered families of elastic potentials.
After training the three methods to datasets on rubber and
skin, the Results section explores in detail the ability of
the models to interpolate and extrapolate, their robustness
with respect to model initialization, the regularity of second
derivatives of the energy, and the trade-off between number
of parameters and model accuracy. We finally discuss the
results in the context of other data-driven efforts for compu-
tational mechanics.

Methods

Polyconvex strain energy density functions

Consider a motion ϕ, the gradient F = ∇ϕ contains all the
local information about the deformation. Within the frame-
work of hyperelasticity, the strain energy function ψ(F)

fully defines the material response. Polyconvexity implies
that the energy ψ(F) can be expressed as a convex func-
tion in the extended domain ψ̂(F, cof F, det F). Intuitively,
this extended domain covers different modes of deformation:
F measures changes in length, cof F changes in area, and
J = det F changes in volume. It is difficult to work directly
with the deformation gradient and its cofactors as inputs to
the strain energy. Instead, the right Cauchy-Green deforma-
tion tensor C = F�F is used because it does not contain
information about superimposed rigid body rotations. Fur-
thermore, material symmetries are enforced by working with
the invariants

I1 = trC = C : I
I2 = 1

2

(
(trC)2 − trC2

)

I3 = J 2 = detC

I4a = C : a0 ⊗ a0 , I4s = C : s0 ⊗ s0 .

(1)

The last two invariants in Eq. (1) are only relevant for
transversely anisotropic materials and depend on the defor-
mation of twomaterial unit vectors a0, s0. For soft tissues, the
vectors a0, s0 represent collagen fiber bundle orientations.
Furthermore, for nearly incompressible materials such as
rubbers and skin, the split between volumetric and isochoric
parts is often used. The isochoric part of the deformation
is F̄ = J−1/3F, with the corresponding deformation tensor
C̄ = F̄�F̄. The isochoric invariants follow

Ī1 = J−2/3 I1

Ī2 = J−4/3 I2

Ī4a = J−2/3 I4a , Ī4s = J−2/3 I4s .

(2)

Based on the split between the isochoric and volumetric
parts of the deformation, the energy can be additively decom-
posed into

ψ = ψiso( Ī1, Ī2, Ī4a, Ī4s) + ψvol(J ) . (3)

For polyconvexity to be satisfied in this additive split,
one requirement is convexity of ψvol and growth conditions
ψvol → ∞ as J → 0 or J → ∞. In the case of fully incom-
pressible materials, the volumetric part of the strain energy is
replaced by p(J − 1), where p is a Lagrange multiplier field
that enforces J = 1. In simple loading cases such as uniaxial
or biaxial deformation, p can be directly determined from
boundary conditions. In addition, for incompressible behav-
ior the isochoric part of the energy becomes a function of the
original invariants defined in Eq. (1).

To ensure polyconvexity of ψiso, recall that this condi-
tion implies a function ψ̂ convex on (F, cof F, det F). The
invariant I1 is convex in F, while I2 is convex in cof F. The
anisotropic invariants I4a , I4s are also convex on F. More-
over, the isochoric split preserves polyconvexity of Ī1, Ī4a ,
Ī4s , and a simple scaling with a power of J is enough to
maintain polyconvexity of Ī2. Thus, a sufficient large family
of polyconvex functions has the form

ψ = ψ1( Ī1)+ψ2( Ī2)+ψ4a( Ī4a)+ψ4s( Ī4s)+ψvol(J ), (4)

with each of the ψi a convex non decreasing function of
its argument, while, as mentioned previously, ψvol has to be
convex and grow to infinity appropriately with changes in J .
Again, for incompressibility, the last term in (4) is replaced
with the Lagrange multiplier constraint, and theψi terms can
be considered as functions of the invariants in Eq. (1).

Stress predictions from a strain energy potential

Given a strain energy function, the second Piola–Kirchhoff
stress follows from the standard Coleman–Noll procedure
[6],

S = 2
∂ψ

∂C
. (5)

Other stress tensors can be easily obtained with push-
forward operations, for instance the nominal or first Piola–
Kirchhoff stress P = FS, or the Cauchy stress σ =
J−1FSF�, which appear in the strong form of linearmomen-
tum balance in the reference or deformed configurations
respectively. Since the energy is in terms of the invariants,
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computing the stress requires the standard derivatives

∂ I1
∂C

= I

∂ I2
∂C

= 1

2
(I1I − C)

∂ I3
∂C

= I3C−1

∂ I4a
∂C

= a0 ⊗ a0 ,
∂ I4s
∂C

= s0 ⊗ s0 .

(6)

The same derivatives as in Eq. (6) apply to the the deriva-
tives of the isochoric invariants with respect to C̄. However,
when using the split into volumetric and isochoric parts, we
need the projection

∂C̄
∂C

= P = J−2/3
(
I − 1

3
C ⊗ C−1

)
. (7)

The tensor I in Eq. (7) denotes the fourth order identity.
Bringing it all together, the second Piola–Kirchhoff stress
takes the form

S = 2
∂ψ

∂C
= 2

∂ψ

∂C̄
: P + Svol = S̄ : P + Svol , (8)

with

S̄ = 2
∂ψ1

∂ Ī1
I + 2

∂ψ2

∂ Ī2
( Ī1I − C̄−1) + 2

∂ψ4a

∂ Ī4a
a0 ⊗ a0

+2
∂ψ4s

∂ Ī4s
s0 ⊗ s0. (9)

It is possible to extend Eq. (4) to capture even a wider
class of materials. Convex linear combinations of the invari-
ants maintain polyconvexity with respect to F. Therefore, in
addition to the invariants in Eq. (1) or their isochoric coun-
terparts Eq. (2), we can consider the mixed invariants

Ki j = αi j Ii + (1 − αi j )I j , (10)

and the corresponding isochoric versions K̄i j . The family of
strain energies considering these mixed terms has the follow-
ing structure

ψ =
∑

ψi ( Īi ) +
∑

ψi j (K̄i j ) + ψvol(J ) . (11)

The expression for S̄ in thismore general case is analogous
to Eq. (9) but with additional terms to account for the ψi j

contributions.

Uniaxial, pure shear, and biaxial loading

For the specific case of isotropic uniaxial deformation of a
perfectly incompressible material, the deformation depends

on the single stretch λ, and the stress in the direction of the
applied stretch is

P = 2(λ − λ−2)

(
∂ψ

∂ I1
+ 1

λ

∂ψ

∂ I2

)
. (12)

For pure shear deformation of a wide but thin specimen,
the nominal stress in the direction of the applied stretch λ is

P = 2(λ − λ−3)

(
∂ψ

∂ I1
+ ∂ψ

∂ I2

)
. (13)

The third loading case of interest for thin incompress-
ible isotropic materials is equibiaxial tension defined by the
stretch λ. For this loading, the nominal stress in the two prin-
cipal directions of applied stretch is the same and equal to

P = 2(λ − λ−5)

(
∂ψ

∂ I1
+ λ2

∂ψ

∂ I2

)
. (14)

Lastly we consider an incompressible transversely ani
sotropic material under arbitrary biaxial loading specified
by the two stretches λx , λy . Without loss of generality we set
a0 = [1, 0, 0], s0 = [0, 1, 0]. The in plane nominal stresses
are

Pxx = ∂ψ

∂ I1
λx + ∂ψ

∂ I2
(I1λx − λ3x ) + ∂ψ

∂ I4a
λx − pλ−1

x

Pyy = ∂ψ

∂ I1
λy + ∂ψ

∂ I2
(I1λy − λ3y) + ∂ψ

∂ I4s
λy − pλ−1

y ,

(15)

with the pressure Lagrange multiplier solved from the plane
stress condition

p = ∂ψ

∂ I1
λ2z + ∂ψ

∂ I2
(I1λ

2
z − λ4z ) , (16)

and the normal stretch obtained from the incompressibility
constraint

λz = 1

λxλy
. (17)

CANNmodels

To construct convex non-decreasing functions to represent
the energy in Eq. (11), one way is to borrow from the archi-
tecture of feed forwardneural networks but usingonly convex
non-decreasing activation functions on a polynomial expan-
sion. Themethod is illustrated in Fig. 1a. Starting fromF, the
invariants Eq. (1) are computed in a pre-processing step. For
ease of implementation and to improve the optimization step
during model training, consider the normalized invariants

Îi = (Ii − ai )/bi (18)
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Fig. 1 Diagram depicting the training and inference processes of the deep neural network material model

where a1 = a2 = 3, a4a = a4s = 1, and bi is a normalizing
constant such that the range of Îi is approximately [0, 3].
Note that in the case of full incompressibility as assumed
fromnowon, the normalized invariants strictly satisfy Îi ≥ 0.
For compressible or nearly incompressible materials, simply
replace Ii with the isochoric counterpart Īi in Eq. (18). For
the mixed invariants, the normalized version is

K̂i j = αi j Îi + (1 − αi j ) Î j , (19)

which also satisfies K̂i j ≥ 0 as along as αi j ∈ [0, 1]. For the
general case including anisotropy, the strain energy can be
summarized as

ψCANN =
∑
i,a,b

ψi,ab +
∑

i, j,a,b,i 	= j

ψi j,ab

=
∑
i,a,b

gi,ab fb(wi,ab Pa( Îi ))

+
∑

i, j,a,b,i 	= j

gi j,ab fb(wi,ab Pa(K̂i j )) ,

(20)

where Pa(x) = xa is a basic polynomial expansion with
a ∈ {1, 2, 3} in our implementation, fb(◦) is the activation
function choice in our case either identity f1(x) = x or
exponential f2(x) = exp(x) − 1. The notation is the same
for the mixed invariants. The weights gi,ab, wi,ab, gi j,ab,
wi j,ab are the trainable parameters of the model and need
to be non-negative to maintain the convex non-decreasing
output.

For the rubber examples below, we only use the two main
invariants Î1, Î2. For the skin example we have two ansatz.
The simpler model includes contributions from Î1, Î2, K̂4a 4s .
The second option for the skin examples takes inputs Î1, Î2,
K̂1 2, K̂1 4a , K̂1 4s , K̂4a 4s .

Our choice of polynomials and activation functions guar-
antee the interpolation of convex non-decreasing functions
of the inputs Îi , K̂i j in the domain Îi , K̂i j ≥ 0 provided that
only non-negative weights are used which is easy to enforce.
The non-negative condition on the domain, Îi , K̂i j ≥ 0, is
trivially satisfied for incompressible materials, and satisfied
for compressible or nearly incompressible materials if the
isochoric invariants are used in Eq. (18). Thus, CANNs a
priori result in polyconvex strain energy functions.
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ICNNmodels

This algorithm also relies on building convex functions of
the normalized invariants and linear combinations of them.
Let X be the input to the first layer, and Zi−1 the output of
layer i − 1. Then, for layer i the output is

Zi = softplus2(exp(W�
z,i )Zi−1 + X exp(Wx,i ) + bi ) , (21)

parameterized by the weights Wz,i , Wx,i and biases bi . For
the first layer we have

Z1 = softplus2(X exp(Wx,1) + b1) , (22)

while for the last layer

Zn = exp(W�
z,n)Zn−1 + X exp(Wx,n) + bn . (23)

This architecture retains convexity because softplus2(◦) is
a convex non-decreasing function evaluated on linear com-
binations of the original input and the intermediate layer
outputs usingnon-negativeweights (enforcedwith the exp(◦)

function). Therefore, ICNNs can be used to create convex
non-decreasing functions of the same normalized invariants
Îi and normalized mixed invariants K̂i j defined in Eqs. (18),
(19) for the CANN models. The general expansion is

ψICNN =
∑
i

ψi ( Îi ) +
∑

i, j, i 	= j

ψi j (K̂i j ) . (24)

Similarly to the CANNs, for the rubber examples using
ICNNs we only consider two functions ψ1( Î1), ψ2( Î2). For
the anisotropic examples we have two models. The sim-
pler one uses three functions ψ1( Î1), ψ2( Î2), ψ4a 4s(K̂4a 4s).
The second anisotropic model also includes the mixed terms
ψ1 4a(K̂1 4a), ψ1 4s(K̂1 4s), ψ1 2(K̂1 2).

NODEmodels

In contrast to the two previous methods, NODEs avoid inter-
polation of the energy and interpolate the derivative functions
directly. In the end, the derivatives with respect to the invari-
ants are the ones that enter the definition of the stress, see
Eq. (9). Consider the normalized invariant Îi , the NODE is
a feed-forward neural network with weightsW and biases b
that define the function f (◦) of the ODE

dyi (ω)

dω
= f (yi , ω) , yi (0) = Îi , (25)

where ω is a pseudo-time auxiliary variable. The output of
interest is the solution of the ODE at a fixed pseudo-time. In

this implementation we choose ω = 1,

∂ψ

∂ Îi
= yi (1) . (26)

Note that the output is directly the derivative of the strain
energy. The key observation is that trajectories of ODEs
do not intersect, thus for two initial conditions y(a)

i (0) ≥
y(b)
i (0), the ensuing trajectories continue to satisfy y(a)

i (ω) ≥
y(b)
i (ω). This implies

∂ψ

∂ Îi

∣∣∣∣
Î1= Î (a)

1

≥ ∂ψ

∂ Îi

∣∣∣∣
Î1= Î (b)

1

⇐⇒ Î (a)
1 ≥ Î (b)

1 . (27)

The monotonicity of the output Eq. (27) is equivalent to
convexity of the underlying ψ . For the mixed invariants, the
NODE defines the derivative

∂ψ

∂ K̂i j
= yi j (1) , (28)

for an ODE analogous to Eq. (25). Therefore, when using
NODEmodels we do not recover an analytical expression for
ψNODE. Nevertheless, the energy can be integrated if needed

ψNODE =
∑
i

∫

Îi

∂ψ

∂ Îi
+

∑
i, j i 	= j

∫

K̂i j

∂ψ

∂ K̂i j
(29)

along a given trajectory over Îi , K̂i j . Even though convexity
ofψNODE with respect to the invariants is ensured byEq. (27),
to construct convex non-decreasing functions the additional
restriction of zero biases b = 0 is applied. With this last
correction, the energy ψNODE is automatically polyconvex.

Benchmark datasets and test cases

We consider two datasets in this study, a classicall rubber
dataset including uniaxial tension (UT), pure shear (PS), and
equibiaxial tension (ET) nominal stress-stretch data from [8].
The other dataset is from porcine skin and consists of three
biaxial tests: strip biaxial in the x direction (SX), i.e. λx = λ

is applied and the orthogonal direction is kept at λy = 1, strip
biaxial in y direction (SY), and equibiaxial tension (EB).
Data for skin comes from [7], and is also nominal stress-
stretch data.

Model calibration

Training of the models consists of finding the set of param-
eters θ̂ that minimizes the mean squared error (MSE) loss
function defined as

θ̂ = argmin
θ

1

N

[
(Pxx − P̂xx (θ))2 + (Pyy − P̂yy(θ))2

]
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Fig. 2 Performance of CANN, ICNN and NODE moddels on rubber
nominal stress-stretch data. Trained on uniaxial tension (UT), models
are compared against UT data (a) but also against equibiaxial tension
(ET) data (e) and pure shear (PS) data (i). Trained on ET, models are

evaluated on UT, ET, PS data (b, f, j) respectively. Similarly, trained on
PS data, comparison against UT, ET, PS curves (c, g, k). All three mod-
els can capture all three datasets when trained on all data simultaneously
(d, h, l)

where P̂xx , P̂yy ∈ R
N are the components of stress as pre-

dicted by the models with parameters θ , Pxx ,Pyy ∈ R
N are

stress data obtained from biaxial experiments and N is the
number of data points.

Training and inference of all the models discussed in this
study were performed in Python using JAX high perfor-
mance numerical computations library. We use the ADAM
optimization algorithm with a step size of 2 × 10−4 and
parameters β1 = 0.9 and β2 = 0.999 (used by JAX). The
training is continued for 50,000–100,000 epochs depending
on the data used for training. Training times for CANN,
ICNN and NODE are less than 20 sec, 50 sec and 7 min,
respectively, in the most computationally demanding train-
ing case (training anisotropic models with all of the skin data
simultaneously) on an Apple M1 Pro CPU.

Results

Performance on rubber dataset

The rubber dataset contains three mechanical tests as
described in the Methods Section. To test the ability of the
data-driven methods to extrapolate we trained first against
one of the three tests and compared against the other two.
Results are depicted in the first three columns of Fig. 2. Not
surprisingly, all three methods perfectly capture the loading
curve onwhich they are trainedon (Fig. 2a, f, k).However, the
methods have difficulty extrapolating. Depending on which
test was used for training, the performance on the validation
data varies.When trained on uniaxial data, predictions on the
other two tests are inaccurate, with stiffer predictions in all
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Fig. 3 Performance of the data-driven constitutive models in terms of
average R2 values from 10 training with different initialization. CANN,
ICNN and NODE moddels trained on uniaxial tension (UT) are com-
pared against UT data (a), equibiaxial tension (ET) data (e), and pure

shear (PS) data (i). Trained on ET, models are evaluated on UT, ET,
PS data (b, f, j) respectively. Trained on PS data, comparison is done
against UT, ET, PS curves (c, g, k). All three models have R2 values
near one for all data when trained on all data simultaneously (d, h, l)

cases compared to the data (Fig. 2e, i). The ICNN trained on
pure-shear data is still able to capture the response in biax-
ial and uniaxial loading (Fig. 2c, g). In contrast, the CANN
model trained on PS data can predict UT and ET data up to
an intermediate stretch after which the prediction exponen-
tial increases and diverges from the data. The NODE trained
on PS data performs well on the UT dataset but not on the
ET dataset. Equibiaxial training appears to be the best for
extrapolating for all three methods. The prediction for ET
data matches closely the experiments, see Fig. 2f, and the
predictions for uniaxial and pure shear qualitatively match
the observed response albeit with some error (Fig. 2b, j). To
verify that the methods are indeed able to capture the entire
response of the material, the last column of Fig. 2 shows pre-
dictions when CANN, ICNN, NODE models are trained on
all data at once. All three methods flawlessly interpolate the
entire dataset (Fig. 2d, h, l).

Results in Fig. 2 are representative, yet, they correspond
to single fit from the CANN, ICNN and NODE models. To
show the robust performance of the data-driven methods, we

repeat the training 50 times and compute R2 values for each
trained model. The R2 values are shown in Fig. 3 in a layout
analogous to the representative training Fig. 2. The R2 values
confirm the previous observations from Fig. 2. For uniaxial
training, R2 values on UT data are approximately one always
(Fig. 3a) but there is little predictive performance on the other
two tests (Fig. 3e, i). For PS training we confirm that NODE
and ICNN are able to capture the PS response (Fig. 3k),
the UT response (Fig. 3c), but not the ET data (Fig. 3g).
CANN models can capture the pure shear response just as
well (Fig. 3k), but unable to extrapolate to the other two
loading cases (Fig. 3c, g). With 50 instances of model fitting,
we can confidently state that equibiaxial tests are indeed the
ones that allow the three machine learning models to better
extrapolate to other loading cases. R2 values in Fig. 3b, f, j are
always greater than 0.656, with narrow standard deviations.
Figure3d, h, l also confirms that when trained on all data at
once, CANN, ICNN and NODE have no trouble fitting the
data, achieving R2 on average 0.971, 0.997, 0.997 for each
of the methods respectively.
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Fig. 4 Performance of CANN, ICNN and NODE models against the
skin mechanics dataset. Trained on strip x (SX) data, the three models
were compared to SX (a), equibiaxial (EB) (e) and strip y (SY) data (i).
Trained on EB data, comparison to SX, EB, SY data is shown in (b, f,

j). Trained on SY data, comparison to SX, EB, SY is shoin in (c, g, k).
Trained on all data simultaneously, the three methods can capture SX
(d), EB (h) and SY response (l)

Performance on skin dataset

The anisotropy of skin leads to poorer capacity of the three
algorithms for extrapolation. Trained with either strip biaxial
in x , strip biaxial y, or equibiaxial tension, the three methods
can capture the response they are trained on but unable to
extrapolate, as illustrated in the first three columns of Fig. 4.
To capture the transversely anisotropic response of skin, the
number of parameters and flexibility of the functional space
available to the three data-driven methods enables them to
produce complex response, but at the same time it leads to
unconstrained and poor predictions outside of the training
region. For instance, trained on SX data, predictions under
SX loading are remarkably accurate (Fig. 4a), but CANN
models tend to predict stiffer responses in EB and SY load-
ing (Fig. 4e, i); NODE predics stiffer response in SY loading
(Fig. 4i) but accurate response in EB loading (Fig. 4e), and
ICNN performs well in EB loading (Fig. 4e) but predicts soft

response compared to the data in SY loading (Fig. 4i). To
verify if the models are able to capture the entire dataset we
trained CANN, ICNN, NODEmodes with all the data simul-
taneously and show the fits in Fig. 4d, h, l. All three methods
can capture the response when trained on all data, however,
fits are not perfect compared to the individual test fitting in
Fig. 4a, f, k. The poorer performance in the simultaneous fit-
ting is consistent between all threemethods and suggests that
the data themselves might be inconsistent with the assump-
tion of hyperelasticity, that there are experimental errors, or
that the functional space available to the data-driven models
needs to be even richer.

A more quantitative analysis of the performance is
reported in Fig. 5, which shows R2 values computed after
10 instances of model training with different, random initial-
ization. Just as observed in the representative fits of Fig. 4,
the R2 scores on the loading used for training are near one
(Fig. 5a, f, k), but they are low or even near zero for the
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Fig. 5 Performance of the data-driven methods on the skin dataset in
terms of R2 scores for data from three type of tests: strip biaxial x (SX),
equibiaxial (EB), strip biaxial in y direction (SY). Trained on SX data
(a), the models are tested agains EB (e) and SY (i) data. Trained on
EB data (f), the models are tested on SX (b) and SY (j) loading. When

trained on SY data (k), the models cannot capture SX (c) or EB (g)
response. When trained on all data simultaneously, CANN, ICNN, and
NODE models can capture all three types of loading: SX (d), EB (h),
SY (l)

validation cases (Fig. 5b, c, e, g, i, j). Surprisingly, there is
still some information from the equibiaxial test (Fig. 5f) that
is useful for extrapolation to the strip biaxial loading cases
(Fig. 5b ,j). Training on the strip biaxial tests, SY has no
information for the SX or EB data (Fig. 5c, g), whereas SX
training does lead to some R2 > 0 for EB (Fig. 5e) but not
SY data (Fig. 5i). The methods are able to consistently inter-
polate the entire data from all three tests regardless of random
initialization (Fig. 5d, h, l).

Extrapolation beyond training range

In the previous sections we have already tested if the models
trained on a given loading scenario can predict the observed
response under a completely different loadingmode.Another
test for extrapolation is to train the models up to a certain
range of stretches and test their capacity to predict accurate
stresses beyond the training range. Figure6 shows the results

for the rubber dataset. For each of the loading cases (UT,
ET, PS), only the first 50% of the data was used in training.
The stress was then predicted for the remaining range. For
an additional comparison, in this case we also trained an
unrestricted feed forward neural network (NN). It is clear that
the automatically polyconvexmodels can extrapolate beyond
the training range. The unrestricted NN, on the other hand,
exhibits a non-convex response immediately after the training
range, with stresses decaying under increased deformation
and falling down to near zero in the ET and PS cases.

For the skin dataset, results from trainingwith thefirst 50%
of the data and predicting the remaining 50% are shown in
Fig. 7. In contrast to the rubber case, here the unrestricted
NN does not show evident unphysical behavior. The CANN
method leads to the best predictions outside the training
range. The ICNN method produces stiffer responses than
the real data, while the NODEmethod tends to predict softer
responses. Much like other constitutive models, the methods
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Fig. 6 Extrapolation
performance of CANN, ICNN,
NODE and an unrestricted NN
when trained with rubber data.
Trained on the first 50% of
uniaxial tension (UT) data (a),
equibiaxial tension (ET) data (b)
and pure shear (PS) data (c) and
tested with the remaining 50%
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Fig. 7 Extrapolation
performance of CANN, ICNN,
NODE and an unrestricted NN
when trained with skin data.
Trained on the first 50% of strip
biaxial x (SX) data (a),
equibiaxial (EB) data (b) and
strip biaxial y (SY) data (c) and
tested with the remaining 50%
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studied here should be used primarily within their training
range. Nevertheless, even if accuracy is gradually lost out-
side the training range, CANN, ICNN and NODE models
can still make reasonable predictions.

Regularity of second derivatives

Thus far we have focused on the performance of the data-
driven models to capture stress-stretch data, which directly
relates to strain energy derivatives. However, using these
highly nonlinear model in large scale physics solvers, either
implicit dynamics or equilibrium, requires computation of
second derivatives of the energy. Therefore, even though sec-
ond derivatives are not related to any data, we are interested
in the regularity of the second derivatives for CANN, ICNN
and NODE models.

For the rubber benchmark the models are based on the
interpolation of two functions ∂ψ(I1)/∂ I1, ∂ψ(I2)/∂ I2. Fig-
ure8 shows the secondderivatives ∂2ψ(I1)/∂ I 21 , ∂

2ψ(I2)/∂ I 22
with the same layout as Figs. 2 and 3. It is surprising
that even though all three methods capture the stress data
quite well, they differ substantially in terms of their second
derivatives. This reflects that there are many strain energy
functions ψ(I1, I2) that are polyconvex and that can capture
the stress-stretch data under uniaxial, pure shear, and equib-
iaxial loading. The CANN, ICNN and NODE are suited to

capture different functions within the large space of func-
tions available to each method. The consistent trend in Fig. 8
is that the CANN models lead often to exponential second
derivatives because one of the two key activation functions
is the exponential. In contrast, the NODE model is the one
with the smallest second derivatives in all cases. For all the
three methods, the second derivatives are smooth functions.

For the skin benchmark, there are more functions being
interpolated by the three data-driven frameworks. As a result,
Fig. 9 shows the second derivatives ∂2ψ/∂ I 21 , ∂2ψ/∂ I 22 ,
∂2ψ/∂ I 24a , and ∂2ψ/∂ I 24b. Consistent with the rubber data
NODE second derivatives are the smallest out of the three
methods. The second derivativesmight increase for some ini-
tial range of deformation but tend to smaller values toward
the end of the testing ranges (Fig. 9i–l). The CANN (Fig. 9a–
d) and ICNN methods ((Fig. 9e–h) have increasing second
derivatives over the range of the invariants. Also similar to
the rubber benchmark, here we see that even though all three
methods perform similarly on the stress-stretch predictions
(see Fig. 4), they do so by interpolating different functions
ψ(I1, I2, I4a, I4s).

Model efficiency

Akey question and common criticism of data-drivenmodels,
particularly neural network-based models, is that increasing
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Fig. 8 Second derivatives of strain energy functions predicted by the
data-driven models trained with rubber data. Training with UT only,
predictions are done for CANN (a), ICNN (e) and NODE (i) models.

Similarly, second derivatives for the three methods are shown for ET
training only (b, f, j), PS training only (c, g, k) and tained against all
data (d, h, l)

the number of trainable parameters logically allows themeth-
ods to capture the limited data better and better, but at the
risk of over-fitting. The polyconvexity constraint, enforced
exactly for CANN, ICNN and NODE models, prevents non-
physical extrapolation,much like expertmodels.On the other
hand, expert models and some non-parametric data-driven
methods [38] are generally very efficient and capture the
data reasonably well with very few parameters. We test how
efficiently can the data-driven models interpolate the data,
i.e. we ask how does the error decrease as a function of the
number of trainable parameters. We use the mean absolute
error as the metric of error in this study, which is defined as
MAE = 1

N (|P11 − P̂11| + |P22 − P̂22|) where P̂11 and P̂22

are the predicted values of stress and N is the number of data
points. We favor an absolute measure of error to a relative
measure due to the fact that experimental data is noisy and
the magnitudes of stress in low stretch regions are extremely
low. This combination causes relative measurements of error

to be unreasonably high even if the model captures the mean
behavior very well.

Figure 10 shows the efficiency plots for the rubber bench-
mark. The structure of the CANN model is between that of
a neural network and an expert model. As a result, there is
a single point for the CANN model for each of the plots in
Fig. 10. For ICNN and NODE models, the error decays with
increasing number of parameters, as expected. When there
are 52 trainable parameters, the NODE and ICNN show sim-
ilar performance in all the training cases. However, the drop
in the error is more pronounced for the ICNN compared to
the NODE framework. This suggests that the NODE model
can capture the data well even with very few parameters.

The efficiency trends are not preserved for the anisotropic
skin data as shown in Fig. 11. In this case, in order to explore
the effect of the number of parameters on the accuracy of
the methods we follow two strategies: reducing the ansatz
by interpolating only the functions in (4), or using the full
expansion (11) but changing the number of trainable param-
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Fig. 9 Second derivatives of strain energy when trained with skin data.
CANN predictions (a–d), ICNN predictions (e–h), and NODE predic-
tions (d–l). Columns correspond to the data used in training. First three

columns correspond to either SX, EB, or SY data only. Last column
shows predictions when models are trained on all data simultaneously

Fig. 10 Model efficiency for the rubber dataset depicted in terms of
mean absolute error (MAE) against number of trainable parameters.
Columns correspond to the type of data used for training: UT (a), ET
(b), PS (c), or all data used simultaneously during training (d). Note

that for the CANN model the number of parameters is fixed and a sin-
gle point is shown for the CANN model in each panel. The ICNN and
NODE are neural network-based models and the number of trainable
parameters increases with number of layers and layer depth

123



Computational Mechanics

Fig. 11 CANN, ICNN and NODEmodel efficiency for the skin bench-
mark shown as mean absolute error (MAE) against number of trainable
parameters and model complexity. For each of the three models, two

ansatz are used: a reduced expansion based on (4), or a full expansion
(11). Plots show efficiency corresponding to different training cases:
SX (a), EB (b), SY (c), or all data simultaneously (d)

eters. For the CANN model, which has a fixed number of
parameters when considering either (4) or (11), we observe
that the full ansatz has lower errors than the reduced one for
all training cases. The flexibility of the framework increases
by including themixed terms, which helps with capturing the
data better. This is consistent with the development of mixed
invariant terms in popular closed-form constitutive equations
such as the Gasser-Ogden-Holzapfel model [39]. The ICNN
and NODE also show decreasing errors when going from the
reduced model (4) to the model including mixed invariants
(11). The improvement is much more pronounced for the
NODE model compared to the ICNN one. In contrast to the
rubber dataset, for skin, increasing the number of parameters
of the neural networks used in the NODE models leads to a
large decrease in error. The ICNNmodel error decreases only
slightly with increasing number of parameters. At the upper
end of the range considered, i.e. approaching 200 parameters,
both ICNN and NODE perform similarly. The most efficient
of the methods for skin data is the CANN, which achieves
the lowest errors with the lowest number of parameters.

Discussion

This manuscript analyzes the performance of three data-
driven methods for isotropic and anisotropic hyperelastic
materials that automatically satisfy objectivity,material sym-
metries, and polyconvexity of the strain energy. Traditional
closed-form models rely on selecting few functional terms
to capture the response of a material in a parsimonious way
with few parameters to fit. Closed-form expressions are an
elegant solution but also have the major downside of sacri-
ficing accuracy. Data-driven methods have the flexibility to
perfectly interpolate data. However, a paucity in their adop-
tion is the difficulty to guarantee basic physics constraints

that are front and center in the design of expert models
[16, 40]. Objectivity, material symmetries, and polyconvex-
ity are key requirements to represent realistic materials. The
CANN, ICNN, and NODE models studied here are con-
structed in such a way that they a priori satisfy these essential
physics constraints. Therefore, these three methods have the
potential to revolutionize modeling and simulation of highly
nonlinear materials. We show that the three methods can
interpolate rubber and skin benchmark datasets for isotropic
and anisotropic hyperelasticity. They capture the data almost
perfectly and have some capacity to extrapolate when trained
on part of the data. The second derivatives are smooth, which
is needed for equilibrium and implicit dynamic solvers. The
models show the expected trade-off between accuracy and
number of parameters. The physics-constrainedmethods out-
perform unconstrained neural networks, particularly during
extrapolation tests. Overall, either of the three modeling
frameworks, CANN, ICNN or NODE based model, is suit-
able for fully data-driven material modeling.

The methods we analyze here stand in contrast to other
recent developments in data-driven computational mechan-
ics. The most obvious way of leveraging machine learning
tools is to directly interpolate strain–stress data. There are
methods along those lines developed in recent years [41].
Model-free alternatives also use strain–stress data directly
and use different regularization techniques to deal with noisy
data and outliers [42, 43]. One limitation of these approaches
is the inability to extrapolate. Another problem of dealing
with stress data is that objectivity and polyconvexity are
not satisfied a priori. Data-driven models that capture the
strain energy function are more similar to expert models
[19]. CANN, ICNN and NODE fall on this category. For
the data-driven models that interpolate the strain energy, one
option to impose polyconvexity is through the loss func-
tion [7, 25]. In contrast, CANN, ICNN and NODE models
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automatically satisfy polyconvexity. The original version of
these methods was introduced in recent publications [8–12].
However, benchmarking of the original formulations is chal-
lenging because different expansions of the energywere used
in each case. In this work we have re-formulated the methods
such that the same invariants and energy terms are used con-
sistently across the three models. With this implementation
we show that, because the constraints are embedded in the
methods, there is no trade-off between model accuracy and
enforcing the physics. The three methods can get accurate
representationof the data, showpositive secondderivatives of
the energywith respect to the invariants, and perform robustly
evenwith random initialization. It should be noted that, while
on the one hand using a specific expansion of the energy in
Eqs. (4), (11), allowed us to compare across the three meth-
ods, other expansions are possible [44]. We did not explore
this further because the functional forms were already gen-
eral enough to capture most closed-form constitutive models
for rubbers and skin [3, 31]. The Eqs. (4), (11) restrict which
deformation invariants are used to build the potentials, but
aside of enforcing the convexity conditions, they can interpo-
late highly nonlinear functions of those invariants, including
and beyond existing closed-form models.

The ideas behind each method are different and this trans-
lates into slight differences in their performance. CANN
leverages the structure of feed-forward neural networks but
uses a fixed number of available terms. Fitting a CANN
involvesfinding theweights of the different terms.As a result,
CANNs produce parsimonious models but are inherently
limited by the number of functional terms. Despite the fixed
structure, CANNs performwell on the benchmark datasets of
this study. Other data-driven model identification algorithms
relying on richer data (e.g. strain field) have also been pro-
posed in recent years to perform sparse-regression material
modeling [26] or ICNN model training [27]. ICNNs rely on
building convex functions by using nested linear combina-
tions of convex non-decreasing functions in every layer of an
otherwise conventional feed-forward neural network struc-
ture.Different ICNNconstitutivemodels have been proposed
and the particular implementation shown here mainly differs
through the expansion Eqs. (4), (11). NODEs deal directly
with the energy derivative functions and leveragemonotonic-
ity of ODEs to get monotonic derivative functions (which
implies convex functions). Because ICNNs andNODEs have
an inner structure that resembles standard neural networks,
they have more freedom to adjust the number parameters by
changing the number of layers or the depth within a layer.
The efficiency plots reflect the trade-off between accuracy
and number of parameters. The increased flexibility of ICNN
andNODEmodels comes at the cost of reduced interpretabil-
ity. As the number of parameters increases, the difference
between NODE and ICNNmodels vanishes. All three meth-
ods can accurately and efficiently capture the data.

The other notable difference between the methods is in
the prediction of second derivatives of the strain energy.
CANN and ICNN models tend to predict increasing sec-
ond derivative functions. The NODE, in contrast with the
other two methods, tends to predict smaller or vanishing sec-
ond derivatives towards the end of the training region. This
difference likely stems from the fact that ODEs have fixed
points. In other words, the derivative predictions converge
to a single value, consequently producing vanishing second
derivatives. In all cases the second derivatives are smooth
functionswhich is ideal for equilibrium and implicit dynamic
solvers [9]. This is in contrast with other data-drivenmethods
that require additional regularization of the derivatives [45].
Another strategy to work with the derivatives of the energy
but avoid solving an ODE would be to explore integrable
neural networks [46].

The methods we benchmark here have been designed
to capture hyperelasticity. More complex material response
beyond hyperelasticity can also benefit from the flexibility
of data-driven methods. There is still a gap in the devel-
opment of physics-informed machine learning methods for
dissipative materials such as plasticity and viscoelasticity
[47]. There have been data-driven methods in this direction,
with different degree of built-in physics constraints [45, 48–
50]. Therefore, this is a central area for future work that can
leverage the three existing frameworks reviewed and refined
here. A second extension that is needed is modeling uncer-
tainty in thematerial response. This is particularly relevant to
biological tissue [1]. Neural network-based frameworks can
capture perfectly the response of a single material and can
easily retrained with new data, but a fully Bayesian approach
would allowdeeper understanding of population distribution.
For example, it would allow us to model how skin properties
change with age, sex, or ethnicity. A Bayesian framework
would also allow monitoring of epistemic uncertainty to
guide data collection and produce trustworthy simulations.
The third item we want to highlight is the extension to multi-
modality data. The three methods we explore are still based
on stress-stretch data. In contrast, some expert models are
built around the idea of microstructure modeling, multi-
scale simulations, or micromechanics arguments [39]. These
ideas have started to permeate intro data-driven modeling
[51, 52]. Alternatively, inferring material behavior from full-
field displacements and global force data without relying on
stress-stretch pairs has also gained attention recently [53,
54]. Physics-informed machine learning methods that can
build on CANN, ICNN or NODE frameworks but also lever-
age images of the tissue microstructure or information about
material composition are a natural next step.
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Conclusions

We present three fully data-driven and physics-constrained
methods for nonlinear material modeling: CANNs, ICNNs,
and NODEs. The methods capture hyperelastic material
response perfectly on benchmark datasets of rubber and skin
under three different loading cases. Evaluating their capac-
ity to extrapolate, their efficiency, and the regularity of their
second derivatives, we conclude that even though the meth-
ods have different features, they all have comparable low
errors which decay with parameter and model complexity,
have smooth second derivatives, and have some capacity to
extrapolate. In summary, thesemethods are suitable for high-
fidelity modeling of arbitrary material behavior without the
need to select closed-form expressions. Code and data are
available with this submission andwe are confident that these
resources complement our detailed analysis andwill favor the
ongoing development and refinement of data-driven compu-
tational mechanics.
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