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ḋ = 0
False
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ofHighlights

Data-driven continuum damage mechanics
with built-in physics

Vahidullah Tac, Ellen Kuhl, Adrian Buganza Tepole

• General, thermodynamically consistent data driven damage model

• Neural ODEs are used for monotonic yield functions

• The same deep learning architecture can learn various analytical models

• The deep learning framework can discover the correct damage functions
from stress-deformation history data

• NODEs can capture experimental data of progressive tissue damage
under cyclic loading
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Abstract

Soft materials such as rubbers and soft tissues often undergo large deforma-
tions and experience damage degradation that impairs their function. This
energy dissipation mechanism can be described in a thermodynamically con-
sistent framework known as continuum damage mechanics. Recently, data-
driven methods have been developed to capture complex material behaviors
with unmatched accuracy due to the high flexibility of deep learning architec-
tures. Initial efforts focused on hyperelastic materials, and recent advances
now offer the ability to satisfy physics constraints such as polyconvexity of the
strain energy density function by default. However, modeling inelastic behav-
ior with deep learning architectures and built-in physics has remained chal-
lenging. Here we show that neural ordinary differential equations (NODEs),
which we used previously to model arbitrary hyperelastic materials with au-
tomatic polyconvexity, can be extended to model energy dissipation in a
thermodynamically consistent way by introducing an inelastic potential: a
monotonic yield function. We demonstrate the inherent flexibility of our
network architecture in terms of different damage models proposed in the
literature. Our results suggest that our NODEs re-discover the true damage
function from synthetic stress-deformation history data. In addition, they
can accurately characterize experimental skin and subcutaneous tissue data.

Keywords: physics-informed machine learning, neural ordinary differential
equations, soft tissue mechanics, adipose tissue, skin biomechanics

Preprint submitted to Elsevier July 31, 2024
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of1. Introduction

Physics-informed data driven constitutive modeling has allowed descrip-
tion of arbitrary materials with previously unmatched precision and within
a unified framework [1, 2, 3, 4]. Machine learning constitutive modeling has
gradually grown in complexity: Hyperelastic frameworks are fairly mature
at this point [5]. Dissipative mechanisms have gained increasing attention
recently, starting with deep learning frameworks to capture arbitrary linear
elastoplastic yield functions [6, 7, 8, 9]. First efforts in the context of non-
linear inelasticity have been proposed, but mostly within the realm of model
discovery, rather than deep learning [10, 11]. Currently, there is no deep
learning framework for continuum damage mechanics at finite deformations
and with built-in physics to simulate soft matter systems such as rubbers
and tissues.

In the quest for data-driven models of soft materials, an important choice
is between black-box approaches compared to model discovery out of a library
of expert models [12, 13]. The route of model discovery has the advantage
of yielding interpretable models, although it might compromise accuracy [1].
Deep learning architectures, on the other hand, take advantage of the univer-
sal approximation properties of fully connected neural networks to produce
incredible flexible models at the cost of interpretability [1, 14, 15]. Some
recent approaches aim at bridging these two classes of data-driven models
[2, 16, 17, 18]. Model discovery also has the benefit of guaranteeing physics
constraints by default. For black-box approaches, physics can be added in
the loss function or directly into the architecture. The latter is, of course,
preferable and has become the method of choice [19].

In our previous work, we introduced a deep learning method with built-in
polyconvexity for hyperelastic materials based on neural ordinary differen-
tial equations (NODEs) [20]. The reasoning behind our approach relies on
two observations: that ODEs can be used to construct monotonic functions,
and that stress data depend on energy derivatives rather than the energy
function itself. Hence, we used NODEs to build monotonic strain energy
derivative functions that represent an underlying polyconvex strain energy
[20]. More recently we extended our framework to finite deformation non-
equilibrium viscoelasticity by introducing a convex dissipation potential, also
modeled with NODEs [14]. The method is flexible and able to capture a wide
range of soft materials, biological and non biological, such as brain, rubber,
myocardium, and fibrin gels.

2
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dissipation in addition to viscoelastic behavior [21]. In rubbers, energy dis-
sipation due to damage is known as the Mullins effect [22, 23]. When first
loaded from a stress-free, virgin state, rubber materials display a character-
istic stress-stretch response. When unloaded and loaded again to the same
maximum deformation, the curve of the second loading will be underneath
the first one. More importantly, this is only seen in between the first and the
second cycles. If unloaded and loaded a third time to the same maximum
deformation as before, the third and second curves will overlap. In other
words, the damage is a function of the previously experienced maximum de-
formation [23]. In the context of linear elastic materials with incremental
rate equations for damage accumulation, stiffness loss is understood as cre-
ation of voids or micro-cracks, which reduce the effective load carrying area
[24, 25]. In the context of large deformations in nonlinear materials, the ther-
modynamically consistent framework to characterize these effects is known
as continuum damage mechanics [26, 27]. By defining the free energy as a
function of the deformation and the damage state of the material, appropri-
ate thermodynamic conjugate variables arise, with clear conditions for the
satisfaction of the second law of thermodynamics. In the case of damage,
the conjugate variable to the damage variable is proportional to the undam-
aged strain energy [26], and a monotonic yield function, similar to plasticity,
guarantees positive energy dissipation [28].

In the present work, we present a fully data-driven model of continuum
damage mechanics with built-in physics: polyconvexity of the strain energy
function and positive, irreversible dissipation in response to damage accumu-
lation. The method extends our previous work on NODE models of hypere-
lastic materials by incorporating additional NODEs to construct monotonic
yield functions. We demonstrate the applicability of the same architecture
to capture a variety of closed-form damage models from the literature. In
addition, we apply our methods to experimental data from skin and adipose
tissue.

2. Materials and Methods

We follow the thermodynamic consistent continuum damage mechanics
approach [26]. We begin with a free energy potential that consists of n
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Figure 1: Overview of the proposed data-driven inelastic damage model with built-in
physics.

additive parts Ψj, j ∈ [1, nfibers + 3] as

Ψ(C,d) = f1(d1)Ψ
o
1(I1) + f2(d2)Ψ

o
2(I2) + f3(d3)Ψ

o
3(J) +

nfibers∑

i=1

fi+3(di+3)Ψ
o
i+3(I4,i)

(1)

where d = {d1, · · · , dn} are the damage variables, fj is the function that
characterizes the change in the energy function with a change in dj, I1 and
I2 are the first two principal invariants of the right Cauchy Green deforma-
tion tensor C = FTF with determinant J =

√
detC, and I4,i are anisotropic

invariants defined in terms of fiber direction vectors vi, as I4,i = viCvi.
This additive decomposition includes the single scalar damage model [26],
but extends it to a more general setting. For instance, fiber damage models
for anisotropic materials such as collagen reinforced models typically incor-
porate additional damage variables [29, 30]. Conceptually, different damage
mechanisms could lead to different energy losses associated with different
deformation modes or different constituents.
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D =
1

2
S : Ċ− Ψ̇ ≥ 0

=
1

2
S : Ċ−

(
dΨo

1

dI1

dI1
dC

+
dΨo

2

dI1

dI2
dC

+ · · ·
)

: Ċ−Ψo
1

df1
dd1

−Ψo
2

df2
dd2

− · · · ≥ 0

=
1

2

(
S− 2

dΨo
1

dI1

dI1
dC

− 2
dΨo

2

dI1

dI2
dC

− · · ·
)

: Ċ−Ψo
1

df1
dd1

−Ψo
2

df2
dd2

− · · · ≥ 0

(2)

where

−Yi = −∂Ψ

∂di
= −Ψo

i

dfi
ddi

is the conjugate thermodynamic force to the damage variable di. Here we
enforce the non-negativity of the dissipation independently for each term in
(2), i.e.,

−Yi = −Ψo
i

dfi
ddi

≥ 0, i ∈ [1, n] .

Since the energy Ψo
i is always positive, fi must be a non-increasing function

of di. The condition of positivity of Ψ (Eq. (1)) also implies that fi(di) > 0.
Furthermore, it is convenient to require that fi(0) = 1, such that Ψo

i defines
the virgin, undamaged state of the material. In summary, fi(di) must satisfy
the following conditions,

fi : R
+ → [0, 1], fi(0) = 1, fi non-increasing (3)

We previously showed that Neural ODEs (NODEs) can be used to construct
monotonic functions and they can easily be modified to map 0 to 0. Following
this, we propose two alternatives for fi. In the more general case we could
implement a data-driven form for fi,

fi(di) = e−Ni(di)

where Ni would be a NODE. It is trivial to see that the requirements in (3)
are satisfied with this form. In practice, the additional degrees of freedom
in this decay function are not necessary provided there is enough flexibility
in the yield function. The more traditional approach, and the one we follow
in the examples below, is to simply scale the energy linearly with respect to
the damage,

fi(di) = 1− di .
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of2.1. Damage evolution

We hypothesize that damage in the material only accumulates when the
level of deformation reaches a threshold or yield criterion [26], which in turn
grows with loading. We denote the corresponding thermodynamic conjugate,
−Yi ≡ τi, and determine the change of each damage variable, di. To this end,
we introduce damage criteria gi of the form

gi(τi(t), ri(t)) = Gi(τi)−Gi(ri) ≤ 0

where Gi(·) is a monotonically increasing function and ri(t) is the current
value of the threshold for τi. We define the evolution of the damage variable
di as

ḋi(t) = µ̇i
∂gi(τi, ri)

∂τi
= µ̇i

dGi(τi)

dτi
(4)

ṙi(t) = µ̇i(t)

where µ̇i is a damage consistency parameter that has to satisfy the Kuhn-
Tucker conditions of the irreversible damage process [31],

µ̇i ≥ 0, gi(τi, ri) ≤ 0, µ̇igi(τi, ri) = 0 . (5)

If gi(τi, ri) < 0, no damage takes place and ḋi = ṙi = µ̇i = 0 by (5)3. If, on
the other hand, damage accumulates, µ̇ > 0, then gi(τi, ri) = ġi(τi, ri) = 0,

gi(τi, ri) = 0 = Gi(τi)−Gi(ri) =⇒ ri = τi

ġi(τi, ri) = 0 =
dGi(τi)

dt
− dGi(ri)

dt

=⇒ dGi(τi)

dτi

∣∣∣∣
τi=ri

τ̇i =
dGi(ri)

dri

∣∣∣∣
τi=ri

ṙi

=⇒ ṙi = τ̇i

and by (4)2, µ̇ = ṙ. By combining this consideration with the evolution rule
of (4)1, we obtain the damage evolution law,

ḋi = τ̇i
dGi(τi)

dτi
. (6)

6



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofNote that when fi(di) = 1 − di, τ̇i does not depend on di, and (6) is an

explicit expression for ḋi. However, for general fi,

τ̇i =
d

dt

(
−Ψo

i

dfi
ddi

)
= −Ψ̇o

i

dfi
ddi

−Ψo
i

d2fi
dd2i

ḋi

and

ḋi = −
(
Ψ̇o

i

dfi
ddi

dGi

dτi

)(
1 + Ψo

i

d2fi
dd2i

dGi

dτi

)−1

.

Since Gi has to satisfy the condition of monotonicity, we propose modeling
G with Neural ODEs as

Gi(τi) = Ni(τi) . (7)

2.2. Closed-form damage models

Most existing damage models propose an simple analytical function to
specify the evolution of damage. This can either be incremental evolution
equations [26, 32], or d can be specified explicitly as a function of conjugate
variable without a rate equation [33, 34]. Here we define d implicitly in terms
of Eq. (6). Note that under monotonic loading, in the absence of unloading,
ri and τi are equivalent and we can write Eq. (6) in terms of ri.

Different types of damage evolution have been proposed in the literature
[35, 36, 28]. For example, damage can evolve according to [35],

d = exp(− exp(η(rd − r))) , (8)

where η is a material parameter and rd is a threshold beyond which damage
occurs. Another exponential equation [36] characterizes damage evolution
as,

d = 1− exp(−η < r − rd >) , (9)

where η is again a material parameter and < • >= max{0, •} denotes the
Macaulay bracket function. An alternative evolution equation [28] takes the
following form,

d = d∞( 1− exp (r/β) ) . (10)

These are only three examples that we will use to illustrate the versatility of
our method to capture damage models from the literature [28].

7
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2.3.1. Training against closed form model directly

To show that the NODE framework is able to capture closed form models,
the first calibration is to fit a NODE directly to the damage functions Eqs.
(8)-(10). Input data is thus sampling of r values, and labeled output data are
ḋ(r) for a specific model from Eqs. (8)-(10). Because an analytical function
is available, N = 50 equally-spaced r values are selected as inputs. The loss
is directly the mean squared error between predicted and the ground truth
analytical model

∑N
j=1(ḋ

pred
j − ḋgtj )/N , where the predicted damage comes

from (6) using Eq. (7). The models are trained for 100000 epochs with the
built in JAX ADAMS optimizer with initial learning rate 5× 10−4 [37]. No
batching is used. The architecture used for the NODE is 1×5×5×5×1. The
NODE is integrated in pseudo-time s ∈ [0, 1] with the 4th order Runge-Kutta
integrator. For validation, to test if fitting directly to the damage functions
Eqs. (8)-(10) is able to reproduce accurate stress-strain behavior, we then use
the trained model Eq. (7) in cyclic loading to progressively larger stretches
and evaluate the damage evolution and stress-stretch response.

2.3.2. Training on stress history data generated with analytical models

As a second validation exercise, we propose the more challenging task
of discovering the damage model from observed stress-strain history data.
The same analytical damage models Eqs. (8)-(10) are used to generate the
stress history data from 3 cycles of loading to progressively larger stretch. A
total of N = 300 stress-stretch values are saved for equally-spaced loading
steps in the time interval t ∈ [0, 6]s, 100 points and 2s for each cycle. For
the loss in this case, the NODE model is used via Eq. (7) to evolve the
damage over time as a function of the imposed loading. For the strain energy
density function, an NODE model is used. The loss is the mean squared error
between predicted and observed stress histories

∑N
j=1(σ

pred
j − σgt

j )
2/N . The

entire stress history is used in every epoch. The loss is minimized over 100000
epochs, with the same optimizer parameters as before. The NODE also has
the same architecture as in the previous subsection. To validate that the
discovered model is indeed the one used to generate the stress history data,
we compare the learned Eq.(7) against d(r) from Eqs. (8)-(10).

2.3.3. Experimental data

We have previously characterized damage of subcutaneous and dermis
tissue [38, 39]. For these experiments, the tissues were loaded uniaxially at

8
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s where s denotes the stages of loading. Five stages were
performed, λs ∈ [1.3, 1.35, 1.4, 1.45, 1.5], for the dermis, with five repetitions
at each stage. The reason for the multiple cycles at a given maximum stretch
before proceeding to the next λs is that tissues display pre-conditioning that
we attribute to the dissipation associated with viscoelastic relaxation and
damage [40]. Since we are only interested in the damage response in this
manuscript, we only use the unloading down-stroke at the end of each load-
ing stages and ignore the remaining cyclic data during training. For the
subcutaneous tissue, the maximum stretches at each stage of loading are
λs ∈ [1.4, 1.5, 1.6, 1.7, 1.5]. Again, only the down-stroke (unloading) stress-
stretch data is available for model training. Because there is no damage accu-
mulation during unloading, the fitting procedure is done in two stages. First,
a data-driven strain energy as well as independent d(s) values are fitted to the
stress data. The notation d(s) distinguishes the value of the damage at the
stages of loading, λs ∈ [1.3, 1.35, 1.4, 1.45, 1.5] or λs ∈ [1.4, 1.5, 1.6, 1.7, 1.5],
from the notation di used previously for different damage mechanisms. After
fitting Ψo

i (or rather its derivative) and the scalars d(s), we proceed to con-
struct a data-driven damage function able to capture the d(s). Because of the
exponential nature of collagenous tissue loading, the strain energy function
is modeled with a scaling ∂Ψ0/∂Ii = exp(Ni(Ii)) where Ni denotes a NODE.
To train the G(◦) functions, we use Gi(τi) = tanh(aN (τi), with a = exp(â)
and â a trainable parameter. There are 5× 50 = 250 data points for dermis
and 4 × 126 = 504 for subcutaneous tissue, all of which are used in each
epoch. The model is trained first for 100000 epochs with the JAX ADAM
optimizer learning rate of 5 × 10−4 to obtain Ψo, then for 15000000 epochs
to learn G. The NODE architecture for the Ψo is 1 × 3 × 3 × 3 × 1 while
for G it is 1× 5× 5× 5× 1. The same architecture and training procedure
is used for the subcutaneous tissue. The overall training time is less than 1
hour on an Apple M1 Pro CPU.

3. Results

3.1. Learning closed-form damage evolution functions

As outlined in the Methods section, we first train G(r), the yield function,
directly based on the analytical models d(r) from Eqs. (8)-(10). The results
are depicted in Fig. 2. The NODE model, unsurprisingly, is able to capture
d(r) perfectly. The more challenging task is to then predict stress histories

9
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ical equations. This is shown in Fig. 2, right. We simulate uniaxial tension
for 3 cycles of increasing maximum deformation. Damage accumulates only
during the loading parts of the cycle, with d remaining at a constant value
during unloading. In the second cycle, once the maximum deformation goes
past the previously experienced maximum deformation, damage accumulates
again. For the stress history, this implies that even in the first cycle, the un-
loading path falls beneath the first loading path. Then, during the second
cycle, the loading path follows the unloading path of the first cycle up to
the previously observed maximum stress. At at that point damage starts
accumulating again. Unloading once more falls beneath the previous loading
curve and so on. All three models Eqs. (8)-(10) show a similar evolution of
damage during the loading history d(t), yet, the stress history shows some
qualitative differences in Fig. 2, right. Namely, while the three models
dissipate energy such that the material losses stiffness, the effect is more pro-
nounced for Eq. (8), less so for Eq. (9), and even more subtle for Eq. (10).
For Eq. (8), d approaches 1 rapidly, leading to appreciable softening of the
material, observed in failure of collagenous soft tissues [41].

3.2. Discovering the damage evolution function from stress-deformation his-
tories

The second, more challenging task, is discovering the damage model from
the stress-stretch history data. These results are shown in Fig. 3. The same
data as in Fig. 2, right, is used: stress history from 3 cycles with increasing
maximum stretch using Eqs. (8)-(10). Trained directly on these data, the
NODE damage model learns a yield function G(r) such that the stress history
is matched accurately, see Fig. 3, left. More importantly, when plotting the
discovered G(r) by the NODE agains the ground truth Eqs. (8)-(10), it can
be observed in Fig. 3, right, that the NODE model is able to discover the
underlying damage model even though Eqs. (8)-(10) were not directly used
in training.

3.3. Application to experimental data

Moving past analytical examples and synthetically generated stress his-
tory data, here we train the NODE strain energy and yield models against
experimental data of dermis and subcutaneous tissue from [38, 39]. Note
that only unloading data is available for training. During unloading, damage
does not accumulate. As described in the Methods section, we trained in

10
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Figure 2: Training against closed-form damage functions. We train G(r) with a NODE
model, to match the analytical functions d(r) from Eqs. Eqs. (8)-(10). The NODE
matches the analytical model. For validation, we simulate uniaxial cyclic loading to in-
creasing maximum stretch using either the analytical functions Eqs. (8)-(10) or the trained
NODE model. Predictions of stress history also match exactly the ground truth, capturing
the energy dissipation due to damage which leads to loss of stiffness and even softening.

two steps. For the dermis, in the first step we trained the strain energy Ψo

(or rather its derivative) and five scalar parameters d(s), one for each of the
unloading curves from the loading depicted in Fig. 4a. The damage evolu-
tion function G(r) was trained in a second step based on the d(s) values. The
comparison between the data-driven model and experimental stress data is
shown in Fig. 4b, while the learned damage evolution function is shown in
Fig. 4c. A similar training strategy was used for the subcutaneous tissue
data. In this case, only four unloading curves were available, from a loading
path illustrated in Fig. 5a. The predicted stress history data during the
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Figure 3: Training with stress-stretch history data. Using analytical models Eqs. (8)-(10),
stress data was generated by simulating three cycles of uniaxial extension to increasing
maximum deformation. The NODE model G(r) was trained by simulating the same
cyclic uniaxial loading protocol with the NODE G(r) and comparing the predicted stress
history against the ground truth. By minimizing this loss during training (left), the NODE
discovers the ground truth Eqs. (8)-(10), right.

entire loading path is shown in Fig. 5b, together with the experimental data
from the unloading portions of the test. The data-driven model is able to ac-
curately match the experiments in Fig. 5b. The discovered damage function
is shown in Fig. 5c.

4. Discussion

We propose a data-driven method to model energy dissipation due to
damage by introducing a damage variable that monotonically decreases the
strain energy capacity of the material. The evolution of the damage is driven
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Figure 4: NODE model accurately captures the damage response of dermis tissue from
cyclic loading data to increasing maximum deformations. The transparent plots corre-
spond to the predicted paths for loading. No data was available for the loading portion of
the tests, only the unloading was recorded and used for training.
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Figure 5: NODE model accurately captures the damage response of subcutaneous tissue
from cyclic loading data to increasing maximum deformations. The transparent plots
correspond to the predicted paths for loading. No data was available for the loading
portion of the tests, only the unloading was recorded and used for training.

by its thermodynamic conjugate variable through a data-driven yield poten-
tial based on NODEs which is monotonic by design. Paired with our previous
data-driven modeling framework for automatically polyconvex strain ener-
gies, the method is fully data-driven and extremely flexible, which allows it
to capture multiple analytical models in the literature as well as experimental
data of soft tissue damage.

Not all damage models for soft nonlinear materials are based on energy
and dissipation potentials. The pseudoelastic modeling approach by Og-
den is extremely popular [23], as well as its extension to hydrogels [42] and
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and micromechanics approaches to describe damage [45, 46, 47]. The work
here more closely aligns with phenomenological models of soft tissue dam-
age, such as the ones we used in the synthetic data examples [35, 36, 28], or
other similar efforts in the literature [48, 49]. Connection to micromechanics
approaches is an interesting area of future investigation. For instance, we
could envision an explicit description of the microstructure geometry [38],
but with a data-driven framework for the damage evolution of individual
fibers. Here, the thermodynamic conjugate variable is the undamaged strain
energy because the response of the material is modeled as a scaling of this
virgin strain energy by a monotonically decreasing damage function [26]. Al-
ternatively, internal variables that do not scale the energy but rather modify
the functional form are also possible [50, 51].

Here we work with NODEs because they span a suitable space of mono-
tonic functions to capture both the strain energy derivatives as well as the
damage evolution criteria. However, NODEs are not the only way of im-
posing the desired physics. For the polyconvexity of the strain energy with
the black-box approaches–as opposed to the model discovery strategy [12]–
the most popular alternative to NODEs are input convex neural networks
[1, 19]. For the yield function, convexity is not needed, monotonicity is suf-
ficient. Monotonic neural networks are an alternative to NODEs [52].

One limitation of the present work is the focus on the damage model it-
self without addressing its numerical implementation into simulations. Addi-
tional considerations might be important when implementing the data-driven
damage model into numerical solvers because of potential damage localiza-
tion [53]. To avoid damage localization problems, gradient based approaches
are popular [54, 55]. Thus, future work will look into computational im-
plementation with likely extension to gradient-based damage models [56].
Additionally, a more thorough benchmarking exercise against a wider set
of damage modeling approaches and with a broader dataset is needed. In
this manuscript we showed that the NODE model is able to capture pop-
ular phenomenological damage models and it is able to capture skin and
subcutaneous tissue data. Yet, a more thorough comparison should include
microstructure-based approaches [29, 30], and other soft materials and tissues
[57, 58].

Taken together, this work contributes to the evolving field of data-driven
constitutive modeling by introducing a flexible and generic framework for
continuum damage mechanics based on NODEs. The method does not make
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functions; yet, by design, it enforces the physical requirement of positive
energy dissipation during damage in addition to the polyconvexity of the
strain energy. Damage mechanisms are particularly important for soft ma-
terials such as tissues, hydrogels, and bioprinted materials, especially for
applications that requiring repetitive loading, for example in heart valve re-
placements [59]. We anticipate that our unifying data-driven framework will
enable widespread accurate prediction of soft material damage in realistic
applications without the limitations and burdens of expert-constructed mod-
els.
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