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Abstract
Many natural materials exhibit highly complex, nonlinear, anisotropic, and heterogeneous mechanical properties. Recently, it 
has been demonstrated that data-driven strain energy functions possess the flexibility to capture the behavior of these complex 
materials with high accuracy while satisfying physics-based constraints. However, most of these approaches disregard the 
uncertainty in the estimates and the spatial heterogeneity of these materials. In this work, we leverage recent advances in 
generative models to address these issues. We use as building block neural ordinary equations (NODE) that—by construc-
tion—create polyconvex strain energy functions, a key property of realistic hyperelastic material models. We combine this 
approach with probabilistic diffusion models to generate new samples of strain energy functions. This technique allows 
us to sample a vector of Gaussian white noise and translate it to NODE parameters thereby representing plausible strain 
energy functions. We extend our approach to spatially correlated diffusion resulting in heterogeneous material properties 
for arbitrary geometries. We extensively test our method with synthetic and experimental data on biological tissues and run 
finite element simulations with various degrees of spatial heterogeneity. We believe this approach is a major step forward 
including uncertainty in predictive, data-driven models of hyperelasticity.

Keywords Hyperelasticity · Generative modeling · Neural ODEs · Data-driven modeling · Heterogeneous materials · 
Polyconvex · Hyper-network

1 Introduction

Creating accurate mathematical models of nonlinear 
mechanical behavior is a central challenge in characteriz-
ing complex materials such as skin and other soft tissues. 
Most biological tissues posses heterogeneous, nonlinear 

and anisotropic properties [1, 2]. Machine-learning-based 
approaches for constitutive modeling have emerged as a 
potential solution to this challenge [3–7]. Successful prior 
approaches to capturing soft tissues’ constitutive behavior 
include multi-layer perceptrons (MLP) [8–12], Gaussian 
processes (GP) [13], input convex neural networks (ICNN) 
[14], constitutive artificial neural networks (CANN) [15], 
and neural ordinary differential equations (NODE) [16] (see 
[17] for a comparative study of ICNNs, CANNs and NODEs 
for modeling hyperelasticity). Alternatively, stress data have 
been used to automatically discover material models from 
a pool of candidate constitutive forms [18–21]. The rising 
popularity of data-driven methods in constitutive modeling 
has also prompted the emergence of auxiliary tools such 
as finite element solvers oriented around machine learning 
[22, 23].

Data-driven models have not only been highly success-
ful in learning hyperelastic behavior from stress data, they 
can also be constructed to satisfy physics-based constraints 
such as polyconvexity [15, 16, 24]. This results in physi-
cally realistic models and aids in the convergence of partial 
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differential equation solvers, such as the finite element 
method, which boosts their usability in engineering appli-
cations. However, most current approaches predict a single, 
homogeneous material response from a set of experiments. 
In reality, natural materials show inter- and intra-specimen 
variability in their mechanical response, i.e., are not homo-
geneous [25–27]. Quantifying the resulting uncertainty in 
biological materials is crucial within the clinical settings 
[28, 29]. This task can be seen as generating plausible sam-
ples of material responses, given the limited data that is 
available. In this regard, the new class of machine learning 
generative models such as generative adversarial networks 
(GANs) or diffusion models have the potential to aid in both 
of these challenges.

Diffusion is a family of score-based generative models 
that has been used, with great success, in many applications 
such as image generation [30], audio generation [31], pro-
tein design [32], and detecting manifolds [33]. In generative 
modeling the task is to approximate the distribution of data, 
p(�) , given some samples, {�i}N

i=1
 , and then generate more 

samples from this distribution. Score-based generative mod-
els achieve this by working with a score function instead of 
the density function, p(�) . The score function is related to 
the gradient of the probability density as ∇� log p(�) . The 
use of score functions results in highly flexible models with 
tractable and controllable generation process without some 
of the difficulties of trying to approximate the density func-
tion, p(�) directly [34, 35].

We have previously introduced NODEs for modeling the 
hyperelastic behavior of biological materials [16]. The mod-
els we proposed are built on rigorous continuum-mechanical 
foundations which enable them to learn the material behav-
ior while satisfying physics-based constraints such as the 
principle of objectivity, material symmetries, and polycon-
vexity a priori. We use NODEs to model the derivatives of 
the strain energy density function with respect to invariants 
of deformation ( I1, I2,⋯ ), which means the models are well 
suited to be used in conjunction with numerical methods 
such as finite element solvers [17]. We have also extended 
our methodology to modeling anisotropic finite viscoelas-
ticity [36].

In this current study, we construct a robust, principled and 
fully data-driven generative modeling framework to perform 
uncertainty quantification to model heterogeneous materials. 
As backbones, we use NODEs to learn the material response 
and diffusion to learn the density functions. As shown in 
Fig. 1, we assume that all but the last layer of every NODE are 
common across a population of materials (say, skin samples 
from a group of mice) and the last layer is subject-specific. The 
subject-specific parameters of the last layer are then used to 
train a diffusion model based on stochastic differential equa-
tions (SDEs) [33]. Once trained, the score function can be used 

in conjunction with the reverse SDE to generate new samples 
with a Gaussian noise vector as the starting point.

We demonstrate the usability of the framework for synthetic 
data as well as experimental data from murine skin. The gen-
eration process can be conditioned on stress measurements, as 
well as parameter observations to generate conditional poste-
riors of the distribution, i.e., p(�|y) , where y is a set of obser-
vations. Furthermore, we use random fields sampled from 
zero-mean and unit-variance Gaussian processes to obtain 
spatially correlated samples, which are useful for generating 
heterogeneous material responses. We use this to generate a 
number of heterogeneous samples and perform finite element 
simulations under various loading conditions.

2  Methods

2.1  Neural ordinary differential equations

NODEs are machine learning frameworks such that the output 
is defined as the solution of an ordinary differential equation 
(ODE) or a system of ODEs at a given time.

where � is a pseudo time variable, and h the variables of 
interest. The right hand side of the ODE, fNODE(⋅, ⋅,�) , is a 
MLP parameterized by � . From the fundamentals of ODEs 
we know that the solution trajectories of ODEs do not inter-
sect, provided that the right hand side is Lipschitz continu-
ous. For the scalar variable case, h(�) , this implies that for 
trajectories h1 and h2 , the following holds

which means that the input–output map of a scalar NODE is 
monotonic. We employ this property of NODEs to construct 
polyconvex strain energy density functions as we explain in 
the next subsection.

2.2  Polyconvex strain energy density functions 
with NODEs

The construction of polyconvex data-driven strain energy 
density functions is based on our previous publication [16] 
and briefly reported here for completeness. We propose strain 
energy density functions of the form

where I1, I2, I4v and I4w are invariants of the right Cauchy-
Green deformation tensor, C = F⊤F , and J = detF . We have 

dh(�)

d�
= fNODE(h(�), �,�) ,

h1(0) ≥ h2(0) ⟺ h1(1) ≥ h2(1) ,

(1)
Ψ(F) =ΨI1

(I1) + ΨI2
(I2) + ΨI4v

(I4v) + ΨI4w
(I4w)

+
∑

j>i

ΨIi,Ij

(
𝛼ijIi + (1 − 𝛼ij)Ij

)
+ ΨJ(J) ,
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shown that in order to preserve polyconvexity of the strain 
energy density function each of the ΨIi

 and ΨIi,Ij
 needs to be 

convex non-decreasing. This is equivalent to monotonicity 

of the derivatives, dΨIi
∕dIi with dΨIi

∕dIi ≥ 0 in the domain 
of Ii . We have also shown that NODEs are monotonic func-
tions and can be made non-negative with minor modifica-
tions to the neural network architecture [16, 36]. As a result, 

Fig. 1  Overview of the method. 
NODE-based constitutive mod-
els yield strain energy density 
functions Ψ that a priori satisfy 
the conditions of polycon-
vexity, material symmetries, 
and objectivity regardless of 
the parameter values. Given 
samples of the stress-stretch 
response (�,�) for individu-
als of a population, the goal is 
to find common weights and 
biases � shared across samples 
from that population, as well 
as individual parameters �i . 
Diffusion is used to estimate the 
density p(�) through approxi-
mation of the score function 
∇� log p(�) and thus generate 
new samples from the popula-
tion starting from uncorrelated 
Gaussian noise N(0, I)
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modeling the derivative functions dΨIi
∕dIi with NODEs 

guarantees polyconvexity of the strain energy density 
function.

The architecture of the NODEs can be adjusted depend-
ing on nonlinearity and complexity of the material response. 
We have previously explored the trade-off between number 
of parameters and accuracy of NODE material models [17].

2.3  Score‑based generative modeling & diffusion

In generative modeling, the task is to find the model distribu-
tion p̂(�) that best approximates the data distribution p(�) 
given some samples {�i

0
}N
i=1

 , where the subscript 0 is used 
to imply t = 0 in the diffusion process. For a given density 
function p(�) , a score-based generative model employs two 
SDEs. The first one is called the forward SDE, and has the 
Itô form

for t between 0 and T, and initial conditions �0 sampled 
from p(�) . Here Bt is m-dimensional Brownian motion (or 
Wiener process) and f(�t, t) and g(t) are functions that cal-
culate the drift and diffusion coefficients, respectively. The 
drift coefficient is designed such that it gradually turns the 
data �0 into noise, while the diffusion coefficient controls the 
amount of Gaussian noise added in each step.

The second SDE, known as the reverse SDE [34], it runs 
for t from T to 0, and it has the form

where B̂t represents the Brownian motion when time is 
reversed and the quantity ∇� log pt(�) is known as the 
score function. Note that this introduces the density pt(�t) , 
which is related to the forward SDE as will be explained 
shortly. It can be shown that if we start with Gaussian noise 
( �T ∼ N(0, I) with I the identify matrix and N(�,�) the nor-
mal distribution with mean � and covariance � ), the reverse 
SDE recovers the original data by removing the drift respon-
sible for the destruction of the data.

There are a number of popular choices for the forward 
and the associated reverse SDE used in the literature, such 
as Brownian motion, critically damped Langevin dynamics, 
and the Ornstein-Uhlenbeck (OU) process [33]. In this study, 
we use the scaled OU process for the forward and reverse 
SDEs, given as

(2)d�t = f(�t, t)dt + g(t)dBt ,

(3)
d�t =

[
g2(t)∇� log pt(�) − f(�t, t)

]
dt

+ g(t)dB̂t,

(4)d�t = −
1

2
�(t)�tdt +

√
�(t)dBt, (forward SDE)

One of the advantages of the OU process is its simple form. 
Since both dispersion and drift functions are linear in � , 
the solution of the forward SDE is given in closed form as 
a normally distributed random variable. The marginal of �t 
conditioned on the observation of the starting point �0 is a 
normal distribution

where the mean �(t) and variance Σ(t) depend on the scal-
ing �(t) . For example, for the standard OU process with no 
scaling, i.e. � = 1,

Here we follow the recommendations from [37, 38] and 
choose the scaling

with hyper-parameters �min = 0.001 , �max = 3 [37], which 
leads to mean and variance of the conditional distribution 
(6),

with

The importance of the marginal Eq. (7) will become evident 
later. As an initial motivation, note that the density pt(�t) 
and therefore the score function ∇� log pt(�) is unknown. 
In score-based generative models, the score function is 
approximated by a neural network s�(�, t) ≈ ∇� log pt(�) 
parameterized by weights and biases � in a process known 
as score matching.

2.3.1  Score matching

We would like to minimize the training loss defined as

where �pt
 denotes the expectation over pt(�) . However, the 

density function pt(�t) is unknown. Instead we can approx-
imate pt(�t) from the data. First, note that pt(�t) can be 
obtained by marginalizing the conditional on the initial dis-
tribution of the forward SDE

(5)
d�t =

1

2
𝛽(t)�tdt + 𝛽(t)∇ log pt(�t)dt +

√
t𝛽(t)dB̂t. (reverse SDE)

(6)pt|0(�t|�0) = N
(
�t |�(t)�0,Σ(t)I

)
,

(7)pt|0(�t|�0) = N
(
�t| exp(−t∕2)�0, (1 − exp(−t))I

)
.

�(t) = �min + t(�max − �min) ,

�(t) = exp(−�(t)∕2),

Σ(t) = 1 − exp(−�(t)) ,

�(t) = ∫
t

0

�(s)ds = �mint +
1

2
t2(�max − �min) .

L(�) =∫
T

0

�pt

[
||∇� log pt(�) − s�(�, t)||2

]
dt,
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We do not have the distribution of the data, however, we can 
approximate it based on the available samples,

With this approximation of p0(�0) , we get our approxima-
tion of pt(�t) which we denote p̂t(�t),

where pt|0(�|�i
0
) are the Gaussians defined in (7) evaluated 

at the points �i
0
 [39], for which the logarithm and gradient 

can be easily computed. Substituting this, we obtain the sur-
rogate loss as

The score function s� is captured with an MLP parameter-
ized by � . To evaluate Eq. (9), samples from the uniform 
distribution t ∼ U(0, 1) are drawn, as well as samples from 
Eq. (8) to obtain the expectations. We use 4 layers with 256 
neurons. The most important hyper-parameter tuning is to 
train the score for different number of epochs depending 
on the dimensionality of the data, in the range [500,2000], 
and select the value that captures the correct statistics of a 
given quantity of interest. The training is conducted on an 
Apple M1 Pro CPU using JAX high performance numeri-
cal library in Python and the Adam optimizer with a step 
size of 1 × 10−5 and parameters �1 = 0.9 and �2 = 0.999 (as 
named by JAX). Training batch sizes vary from 10 to 200 
depending on the sample size. Training time is on the order 
of minutes.

2.3.2  Sample generation

Once trained, the score s� is used in place of ∇� log pt(�t) in 
the reverse SDE Eq. (5) with initial conditions �T ∼ N(0, I) . 
For the integration of the reverse SDE we perform 1000 time 
steps of the Euler-Maruyama scheme with a time step of 
Δt = 1 × 10−3 from t = 0 to T = 1.

2.3.3  Conditional diffusion

We can condition the generation process to obtain samples 
that are closer to a given measurement. The score function 

pt(�t) = ∫ pt|0(�|�0)p(�0)d�0 .

p0(�0) ≈ p̂0(�0) =

N∑

i=1

𝛿(� − �i
0
) .

(8)

p̂t(�t) =�p̂0
[pt|0(�|�0)]

=
1

N

N∑

i=1

pt|0
(
�|�i

0

)
,

(9)L̂(�) =∫
T

0

�p̂t

[
||∇� log p̂t(�) − s�(�, t)||2

]
dt.

can be obtained from the density by differentiating its loga-
rithm and the density can be recovered up to a constant by 
integrating the score function. This means working with 
the score function is equivalent to working with the density 
function. This allows us to use Bayes’ rule to condition the 
generation process on a set of observations y:

or—in terms of the score function—[34],

This new score function can be plugged into the reverse 
SDE after training to obtain samples conditioned on obser-
vations y.

For example, consider � to be the parameters of a NODE. 
Let y ∈ ℝ

nobs be the observation of some quantities of inter-
est, e.g. the stress, and �̂(�) ∶ ℝ

N
→ ℝ

nobs the material 
model connecting the variables � to the quantity of interest. 
Assuming a Gaussian likelihood with noise � , the corre-
sponding score is

The reverse SDE is analogous to (5) but with the additional 
score

Note that while it is possible to use the likelihood as in 
(10), plugging in the current value of the variable �t , a time 
dependent likelihood can be designed as proposed in [40, 
41].

2.4  Generative hyperelasticity

As shown in Fig. 1, the goal of the proposed framework is 
to generate constitutive models for a population, e.g., the 
mechanical behavior of murine skin. The material models 
are defined by strain energy density functions, which are 
functions of deformation. We want to sample these functions 
from a distribution that characterizes the materials from a 
population such that they satisfy the desired polyconvex-
ity, objectivity, and material symmetries. Our approach is 
akin to hypernetwork or latent space approaches in [42, 43], 
with the difference that the strain energy density function 
is represented in terms of NODEs in Eq. (1) guarantees 

p(�|y) = p(y|�)p(�)
p(y)

,

∇� log p(�|y) = ∇� log p(y|�)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Score of the likelihood

+ ∇� log p(�)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

The trained score, ≈s�(�,t)

.

(10)∇� log p(y|�) = −
1

2𝜍2

nobs∑

i=1

(
(yi − �̂�i(�))∇��̂�i

)
.

(11)
d�t =

1

2
𝛽(t)�tdt + 𝛽(t)

�
∇� log pt(y��t)

+∇� log pt(�t)
�
dt +

√
t𝛽(t)dB̂t .
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that any sample of NODE parameters already satisfies the 
desired constraints for the strain energy a priori. We split 
the weights and biases of the NODEs into a subset � which 
is shared among all individuals of the population, and a sub-
set �i , the weights of the last layer of the NODEs, which is 
specific to an individual i (see Fig. 1). Our explicit notation 
for the strain energy density function combining shared and 
individual parameters is Ψ�,�i(F) . Our goal is then to find 
the density over the parameters p(�) that characterizes the 
population.

Consider stress-stretch data from individuals, �i(�) where 
i = 1, ...,M are the individuals of the population for which 
we have observations of the stress for different deformations 
� . The first goal is to find the population � and individual �i 
that can capture the data �i(�) . We achieve this goal by mini-
mizing a standard loss that computes the mean average error 
between the data and the predicted stresses from the model 
�i
pred

(�|�,�i) . Then, given the samples �i , we use the proba-
bilistic diffusion methods outlined above to estimate the 
density p̂(�) which allows us to generate new models Ψ�,� 
from the population and derived quantities of interest such 
as stress density p̂(�).

2.5  Heterogeneous material fields

Many materials are heterogeneous, in other words, the mate-
rial response depends on the spatial coordinates, such that 
the strain energy density function can be written as Ψ(�, x) . 
We leverage the generative hyperelastic models from the 
last section in order to generate not just point estimates of 
the material response according to the fitted distribution, but 
spatially heterogeneous material fields. The key advantage 
of diffusion models is that we start from the uncorrelated 
Gaussian noise �T ∼ N(0, I) . Thus, to produce spatially 
correlated fields �(x) we instead start by sampling a GP 
�T (x) ∼

(
0, k(x, x�;�)

)
 where k is a covariance function such 

that it has unit variance and correlation lengths �,

with �i denotes the length scales of the correlations for each 
coordinate of the points x ∈ ℝ

d . Thus, given a trained score 
function, spatially correlated fields Ψ�,�(x) of material prop-
erties can be generated by the Euler-Maruyama scheme

with time step Δt = 0.001 and Ẑt(x) a GP with zero mean, 
kernel (12), and the same length scales � . For complex 
geometries, sampling GPs relies on an expansion using the 

(12)k(x, x�;�) = exp

{
−

d∑

i=1

(
xi − x�

i

)2

2�2
i

}
,

(13)
�t−Δt(x) =�t(x) +

1

2
�t(x)𝛽(t)Δt

+ ∇ log pt(�t(x))𝛽(t)Δt + Ẑt(x)
√
Δt𝛽(t)

eigenfunction of the Laplace operator as in [44–46]. In this 
case, the eigenfunctions are approximated with finite ele-
ments. With this approximation we recover a Matérn kernel 
5/2, for which we also set the variance to one and change the 
length scale. Briefly, given a manifold B , the eigenvalues of 
the Laplace-Beltrami operator are obtained by solving

where �i are the eigenvalues corresponding to the eigenfunc-
tions ei(x) . For a domain discretized with finite elements, the 
eigenvalue problem can be computed with standard finite 
element techniques [47]. Given �i, ei(x) , the kernel for the 
manifold can be expressed as

where �, � are the hyperparameters of the kernel, d is the 
dimension of the manifold, and Cm is a normalizing con-
stant to ensure that samples of the Gaussian process on 
B have unit variance. The constant can be determined by (
V−1
B

∫
B
kB(x, x)

)1∕2
= 1 with VB the volume (or area) of the 

manifold. The length scale is controlled by the hyperparam-
eter � [45].

2.6  Model calibration and verification

Strain energy density functions of the form (1) encompass a 
large ansatz by including potential interactions between all 
the different invariants. However, in practice we have found 
that a smaller ansatz can describe most materials extremely 
well. In this study we use assume that the materials are 
incompressible ( J = 1, dΨJ∕dJ = 0 ) and use the following 
formulation for isotropic and anisotropic materials

All but the last layer of the neural networks in each of the 
NODEs are common across the population and are not used 
in the generative modeling process, whereas the last layer is 
individual-specific.

For synthetic data generation, we use strain energy func-
tions of the form

Δei(x) = �iei(x)

(14)

k(x, x′;Cm, �, �) =
1
Cm

∞
∑

n=0

(

2�
�

2
+ �n

)−�−d∕2

en(x)en(x′) ,

Ψ(F) = ΨI1 (I1) + ΨI2 (I2) (Isotropic, 2 NODEs)

Ψ(F) = ΨI1 (I1) + ΨI2 (I2)

+ ΨI1,I4v (�1I1 + (1 − �1)I4v)

+ ΨI1,I4v (�2I1 + (1 − �2)I4w)

+ ΨI4v ,I4w (�3I4v + (1 − �3)I4w) (Anisotropic, 5 NODEs) .

(15)ΨMN =
k1

k2
(exp(k2(I1 − 3)) − 1) + �(I1 − 3)
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often referred to as the May-Newman model [48].
For experimental data, we use biaxial stress ( �xx, �yy ) 

- stretch ( �x, �y ) data from murine skin from [49]. The 
data are collected under off-X ( �y = �, �x =

√
� ), off-Y 

( �x = �, �y =
√
� ) and equibiaxial ( �y = �x = � ) loading 

conditions from the ventral and dorsal regions of 15 differ-
ent mice.

3  Results

3.1  Synthetic data evaluation

We first test the generative modeling framework with syn-
thetic data generated from a strain energy density function 
of the form (15). We specifically choose an exponential 
strain energy density function to challenge the framework. 
The three parameters of strain energy density function are 
sampled from asymmetric gamma distributions and 10000 
stress-stretch curves were generated from this population 
to approximate the distribution of stress. The distribution 
of the underlying material parameters and the first 100 of 
the resulting stress responses are shown in Fig. 2a. We use 
the distribution of stresses at � = 1.1 in equibiaxial loading, 
p(�xx|� = 1.1) , to benchmark the performance of the diffu-
sion model when trained with 5, 10, 50, 100, and 500 sam-
ples from the population (Fig. 2b). Namely, NODE based 
models were trained to the stress-stretch data to obtain the 
common parameters � as well as the individual sample 
parameters �i for samples i of the population. The diffusion 
scheme was then used to estimate the density p̂(�) out of the 
individual NODE models, and to then produce the estimate 
of p̂(𝜎xx|𝜆 = 1.1) by generating new samples from p̂(�) and 
evaluating the NODE-based strain energy density function 
(1). The results of diffusion match the training data increas-
ingly well as the number of samples from the population is 
increased from 5 to 500. As a benchmark we perform the 
same study with a classic probability estimation method, the 
mixture of Gaussians. This approach using all 500 observa-
tions performs fairly well in this simple, isotropic case but 
not in the anisotropic case when the number of parameters is 
increased (See Supplement Fig. 2). Even though the mixture 
of Gaussians can reasonably estimate p(�xx|� = 1.1) , it is 
unable to capture the skewness of the distribution and fails 
when compared to the probabilistic diffusion model.

Figure 3 shows pair plots of the distribution of the NODE 
parameters. This figure is to verify that the density estima-
tion with diffusion is equivalent to the kernel density esti-
mation directly applied to 100 �i samples of NODE param-
eters. As can be seen, the diffusion generative model has no 
problem in capturing the joint probability of the parameters 
� , however it has a tendency to concentrate more avidly 

towards the center of the distribution. This figure also shows 
that the joint probability of the NODE parameters is not 
necessarily Gaussian, which explains why the mixture of 
Gaussians from Fig. 2 has difficulty estimating the material 
behavior of the analytical case, and fails with the anisotropic 
skin data (see Supplement).

As the size of the neural networks grow, the NODEs 
become increasingly more flexible, allowing them to capture 
the training data more closely. However, this could come at 
the cost of increased dimensionality for the density estima-
tion problem. We checked whether the increased dimension-
ality of � from 4 to 18 had an effect on the density estima-
tion for the analytical problem. We found that there was no 
decrease in performance estimating p̂(�) for this example 
(see Supplemental Fig. 1).

3.2  Experimental data characterization

Next we train the model with experimental data from murine 
skin. Based on our results with the synthetic data, for the 
murine skin dataset we start by determining the right number 
of subject-specific parameters (Fig. 4). As the number of 
parameters is increased the training loss decreases whereas 
the energy distance displays a valley with a minimum at 31 
parameters. The energy distance [50], is a measure of the 
discrepancy between two distributions that satisfies the usual 
requirements of a distance function. See the Supplement for 
additional information on the definition of the energy dis-
tance. In this case, the energy distance is computed between 
the empirical distribution of the quantity of interest based 
directly on the data (stress at a particular deformation) 
and the corresponding distribution of the stress generated 
by sampling p̂(�) and evaluating the NODE model at the 
desired deformation. Even though the energy distance is not 
computed with respect to the actual distribution, because it 
is not available, this is still a meaningful test that gives con-
fidence on a good estimation of the underlying parameteriza-
tion of the material model. Based on Fig. 4, we determined 
that 31 parameters was a good choice for the subsequent 
analyses.

The training data from the 15 mice and the generated 
samples are shown in Fig. 5. The variability in the popula-
tion is significant which is not surprising for soft tissues such 
as skin, that show variability between species, with respect 
to age, sex, anatomical location, and even from one individ-
ual to another [49, 51]. The tissues are nonlinear, anisotropic 
(collagen fibers lead to stiffer response along the x direc-
tion), and the data have some noise. Nevertheless, the gen-
erated samples from diffusion can realistically describe the 
behavior of the population. Crucially, because of the struc-
ture of the model in Eq. (1), the learned distribution over 
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the strain energy density functions is guaranteed to produce 
function samples that satisfy the desired physics-constraint.

With the trained model, one important task is the gen-
eration of new strain energy density function samples con-
ditioned on observations. A trivial example is to condition 
the reverse SDE of the diffusion process on observation of 
NODE parameters �̄ . An example demonstrating the process 
of conditioning generation on an observed parameter set is 
given in the Supplement. This generation process is still use-
ful in that it can be used to produce samples �∗ similar to 
existing samples in the training set but with some desired 
variance � . The more important problem is showcased in 
Fig. 6, which demonstrates the case of conditioning the 

generation of NODE parameters �∗ directly on observed 
experimental stress data �i . Figure 6a shows generation 
of parameters from p̂(�) without any additional observa-
tions. The generative model is then conditioned on the (so 
far unseen) stress data shown in Fig. 6c–e. The posterior 
diffused parameters and the stress responses obtained from 
these parameters are shown with orange lines in Fig. 6b–e, 
respectively. Samples from the population distribution are 
also shown for comparison. Note that for the conditional 
distribution we included the score of the likelihood shown in 
Eq. (10) where �̂(�) is the model that evaluates the stress at 
a given deformation given the NODE parameters � . Genera-
tion of a material model from the population conditioned on 

Fig. 2  Synthetic data example. An analytical material model with 
three parameters is used and samples from the joint distribution of the 
parameters of the material model �, k1, k2 are evaluated at different 
deformations �x = �y = � to get the corresponding stress � for a total 
of 10,000 individuals from this population, the first 500 of which is 
used for training the model. The NODE model is trained on the (�, �) 
data to obtain common parameters � as well individual parameters 

�i . Score matching diffusion is used to estimate p̂(�) which enables 
estimation of distribution of quantities of interest such as the stress at 
a particular deformation p̂(𝜎xx|𝜆 = 1.1) . The predicted distribution of 
stress matches closely the true distribution as the number of samples 
from the population are increased from 5 to 100, outperforming tradi-
tional density estimation methods
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the observation of a quantity of interest of a new individual 
is of upmost importance in applications such as personal-
izing a computational model for an individual [52].

3.3  Heterogeneous material properties

Up to now the reverse SDE has been used to generate point-
wise estimates, independent of the spatial coordinates x . 
However, as described in the Methods section, we extend 
the reverse SDE so it depends on x by sampling a GP with 
zero mean, unit variance, and arbitrary length scales. Gen-
eration of spatially correlated parameter fields is shown in 
Fig. 7. We sample Nparams functions of the physical coordi-
nate x from a zero-mean GP to be used as spatially-varying 
inputs for the reverse SDE (Fig. 7a). The reverse SDE then 
produces spatially-varying NODE parameter sets (Fig. 7b). 
Note that any cross section of Fig. 7a resembles a set of 
samples from the standard normal distribution since the 
functions f (x) are sampled from a zero-mean GP with unit 
variance. The diffused parameters are then used in NODE-
based material models to predict stresses given stretches 
over the domain x (Fig. 7c). As an example, we use con-
stant stretch function �x(x) = 1.25, x ∈ [0, 1] and obtain the 
resulting stress field �xx(x) for a few different samples in 
Fig. 7d, e. Even though the input for the stress model is a 
constant field, the output is a spatially-varying stress field 

�xx(x) with correlation lengths influenced by the correlation 
of the material properties �.

The first test that we perform is to verify that it is reason-
able to use an average response even if the material samples 
may have spatial heterogeneity. First, we chose one of the 
individuals from the population and generated samples from 
the conditional distribution considering we have observed 
the parameters �̄ of that individual, as shown in the Supple-
ment Fig. 3. This step generates material responses close to 
that sample but with some variance � as illustrated in Figs. 8 
and 9a, d, g.

Figure 8 shows the fields over the square domain of 
some of the parameters � conditioned on the observation 
of parameters �̄ . We also plot the contour of �xx assuming a 
uniform stretch of �x = �y = 1.1 in the domain. It is impor-
tant to note that the fields of �xx are not finite element solu-
tions of the stress field but rather a way to visualize the field 
of material response with a single scalar rather than plotting 
contours of � which have no physical meaning.

An alternative way of visualizing the material response 
of the spatial fields in Fig. 8 is to plot the pointwise stress-
stretch curves as demonstrated in Fig. 9a where it can be 
seen that the material properties at every point are near the 
response Ψ𝜑,�̄�(F) specified by the observed parameters �̄ . 
Following the generation of heterogeneous skin pieces of 
tissue, we performed finite element simulations for Off-X, 

Fig. 3  Pair plot to visualize 
the distribution of the NODE 
parameters � . 100 samples of 
parameters �i were used to train 
the diffusion generative model. 
Comparison between a direct 
kernel density estimation of 
p(�) and the density estimation 
from diffusion shows that the 
score matching model can cap-
ture the distribution accurately
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Off-Y and Equi-biaxial deformation in Abaqus using the 
FIELD command in Abaqus to implement �(x) over the 
mesh, as well as a user material subroutine UMAT to evalu-
ate the NODE-based constitutive model. Dirichlet boundary 
conditions were applied on the boundaries of the domain, 
akin to the experiment. Heterogeneous strain fields from the 
finite element simulations are illustrated in Fig. 9b, e, h. The 
variation in the strain field is a consequence of the material 
field �(x) which has characteristic length scale between 0.2 

and 0.6 times the edge length. However, despite the stresses 
being heterogeneous, averaging the response (integration 
of forces over the boundaries) collapses back to the stress-
stretch response Ψ𝜑,�̄�(F) defined by parameters �̄ , as illus-
trated in Fig. 9c, f, i. Integration of the boundary forces and 
use of the average strain is similar to the post-processing 
done on the experimental data. This confirms that, under 
the assumption of smooth heterogeneities with intermediate 
length scales, even if the square samples of skin tissue in 

Fig. 4  Estimation of the distribution of murine skin mechanical 
behavior using NODEs and diffusion probabilistic models. Stress–
strain data (�,�) from 15 mice was used to train NODE-based strain 
energy density functions by minimizing the training loss (a). The 
parameter samples underlying the material response, �i , were then 
used to estimate the density p̂(�) using diffusion. The total variation 
distance between the empirical distribution of a quantity of interest 

(stress at a given stretch) estimated directly from the experimental 
data and the corresponding distribution generated by sampling p̂(�) 
and evaluating the NODE-based strain energy density function was 
used as a metric of model quality (a). There is a trade-off between 
increasing model complexity, training loss, and total variation dis-
tance (b–d). Solid lines correspond to the NODE predictions and dot-
ted lines correspond the data
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Fig. 5  Experimental data of murine skin mechanical response from 
15 mice and corresponding samples generated from the diffusion 
model for Off-X (a), Off-Y (b) and Equibiaxial deformation (c). Sta-
tistics of quantities of interest from the generative model, such as 

stress at a given deformation, show similar trends to the experimental 
data (d). The generated samples are realistic members of the popula-
tion of murine mechanical response and satisfy physics constraints a 
priori 

Fig. 6  Conditioning strain energy density function generation on 
experimental stress observations. Once the mechanical behavior 
of the population has been learned (a), the generation of new strain 
energy density functions, i.e., new samples �∗ , can be conditioned 
on stress data �i by adding a score of the likelihood of this observa-

tion to the reverse SDE of the diffusion process (b). The stress-stretch 
data of the population (grey) as well as of the conditional distribution 
(orange) based on the stress observations (red) is shown for Off-X (c), 
Off-Y (d), Equibiaxial (e)



 Engineering with Computers

Fig. 7  Generation of spatially correlated heterogeneous material 
fields. Instead of sampling independent standard normal distributions, 
we sample functions f(x) from a Gaussian process with zero-mean 
and appropriate covariance function depending on length-scales � 

(a). Evaluation of the reverse SDE yields material fields in terms of 
NODE parameters �(x) (b). This enables the evaluation of the NODE 
constitutive models (c), taking input deformation fields �x(x) (d) to 
produce stress fields �xx(x) (e)

Fig. 8  The distribution of some of the sampled parameters � gener-
ated with the reverse SDE condition on the observation of parameters 
�̄ with some variance � . Spatial fields of components �j of the vector 
� plotted on the square domain (top), and the resulting distribution of 

stiffness (as measured by �xx at �x = �y = 1.1 ) (bottom) were gener-
ated by sampling from three different GPs with length scales; 0.2L 
(a), 0.4L (b) and 0.6L (c) where L indicates the edge length of the 
square
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experiments were heterogeneous, it is safe to work with the 
average response of each sample of the population in order 
to train the diffusion probabilistic model.

Even though the heterogeneity did not affect the overall 
or average mechanical behavior of square pieces of tissue 
subjected to biaxial deformation, spatially varying mate-
rial properties can have an impact on the response of more 
complex problems which induce stress concentrations. For 
such problems, heterogeneous material fields can lead to 
amplification of the maximums stress at regions of interest. 
We illustrate this phenomenon in the geometry Fig. 10.

We again start by generating spatially correlated fields 
�(x) over the geometry P ⊂ ℝ

2 shown in Fig. 10, where the 

�(x) are conditioned on the observation of the parameters �̄ 
of one of the individuals of the population with some vari-
ance � . Contours showing components �j of the vector �(x) 
over this manifold are illustrated in Fig. 10. The compo-
nents �j were generated with the Matérn kernel Eq. 14, with 
different length scales. To better visualize the mechanical 
properties with a single scalar contour, we plot the stress 
field �xx , corresponding to a uniform biaxial deformation 
�x = �y = 1.1 . Similar to the heterogeneous materials in the 
square domain, the contours of �xx in Fig. 10 are a meaning-
ful way of visualizing the heterogeneous material behavior 
but are not the solution of linear momentum balance. Finite 

Fig. 9  Average response of square tissue samples with heterogeneous 
material properties subjected to off-x, off-y and equi-biaxial deforma-
tion. Material behavior close to one of the members of the population 
were generated by conditioning the diffusion process on observation 
of the parameters �̄ of that sample but with different variance � (a, 
d, g). The heterogeneous material fields �(x) were implemented into 

the finite element simulations to obtain the heterogeneous strain fields 
(b, e, h). Integration of the forces on the boundary, together with the 
stretch boundary condition overlap with the response (�, �) to that 
defined by the parameters �̄ regardless of the tissue heterogeneity (c, 
f, i)
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element simulations with the properties illustrated in Fig. 10 
are explored next.

Because of the complex geometry, pulling on the top sur-
face and fixing the bottom surface induces stress concentra-
tions at the corners of the domain, and a band of high stress 
along the spine of the P connecting top to bottom surfaces. 
The uniform material cases are shown in Fig. 11 top. The 
most important of the uniform material cases is the Base-
line, which is when the material behavior corresponds to 
the parameters �̄ . The two other uniform cases are material 
responses that bound the samples from the conditional dif-
fusion around �̄ . The Soft case is, as the name suggests, the 
lower bound of the generated � around �̄ , while the Stiff case 
is the upper bound from the sampled material responses. The 
three uniform cases show the same stress distribution, albeit 
with different magnitude of the maximum principal stress 
(MPS) from the soft to the stiff cases.

The heterogeneous material distributions �(x) over P are 
controlled by the length scale � , which is varied from 0.05 
to 0.6 times the width of the P . Unlike the heterogeneous 
square tissue models of Fig. 9 for which the response did 
not depend on the heterogeneity, the heterogeneous P has 
a qualitatively different response compared to the uniform 
case. Observed in Fig. 11, middle, the MPS over P is on 
average greater than the baseline case for all length scales � . 
As the length scale increases, there are some samples of �(x) 
that produce lower MPS than the baseline, approaching the 
soft uniform case, as well as samples of �(x) approaching 
the stiff uniform case. Indeed, the soft and stiff uniform cases 
can be seen as samples �(x) when the length scale goes to 
infinity. What is more interesting is the distribution of MPS 
for smaller length scales. For 𝜗 < 0.2 the MPS distribution is 
always greater than the baseline case while still bounded by 
the stiff uniform case. This implies that heterogeneous mate-
rial properties cannot be ignored for complex geometries. 

Extremes of the MPS distribution for different � are depicted 
in Fig. 11, bottom.

The heterogeneities investigated here were generated 
starting with smooth Gaussian fields with different hyper-
parameters such as the length-scale. Regularity of the fields 
could be adjusted, for example changing the hyper-param-
eters of the Matern kernel [45]. If full-field data was avail-
able, these hyper-parameters could be learned from the data 
directly. Additionally, full-field data could be used to learn 
spatially-varying scores that capture the correct correlation 
structure of a material.

4  Discussion

We presented a framework for generating constitutive mod-
els for hyperelasticity that a priori satisfy desirable physics 
constraints. The model is based on diffusion and specifically 
score matching models. One key idea that we introduced is 
to guarantee polyconvexity of random samples by working 
with NODE-based strain energy functions that are polycon-
vex by design [16]. Thus, rather than learning distribution 
over a discrete set of strain energy density function evalua-
tions directly, the framework is akin to hypernetworks [53]: 
we estimate the probability density of NODE parameters 
with diffusion given stress–strain data. We showcase the suc-
cess of the framework in learning the distribution of material 
response both when presented with synthetic data and exper-
imental data from murine skin. Once trained, the generative 
model can be used to sample new material models from 
the population, or models conditioned on new experimental 
observations. Another key idea is the extension of the gener-
ative framework to sample spatially correlated fields in order 
to model heterogeneous materials on complex geometries. 
Material heterogeneity can lead to amplification of stress 

{ } =1, ··· ,5

[kPa]

{ } =1, ··· ,5

[kPa]

{ } =1, ··· ,5

[kPa]

(a) = 0.2 (b) = 0.4 (c) = 0.6

Fig. 10  The distribution of (some of the) sampled parameters on the P (top) and the resulting distribution of stiffness (as measured by �xx at 
�x = �y = 1.1 ) (bottom) for three different GP length scales; 0.2L (a), 0.4L (b) and 0.6L (c) where L indicates the width of the P
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concentrations. Thus, among other examples, applications 
involving heterogeneous materials such as skin and biologi-
cal tissues requires sampling spatially correlated fields in 
order to guide decision making under uncertainty.

Usual application of diffusion-based generative mod-
els are inherently finite-dimensional, e.g., images [54]. 
There have been some recent efforts focused on generative 
models for functions or manifolds. For example, Du et al. 
[42] and Dupont et al. [43] represent functions with MLPs 
and propose to learn a latent space and a hypernetwork to 
go from the latent space to the weights and biases of the 

MLPs. Diffusion probabilistic models are then used on 
latent space samples. Instead of parameterizing functions, 
it is possible to work directly with finite-dimensional data 
by sampling both the domain and the function values, as 
shown in [44, 55, 56]. However, sampling domain inputs 
and corresponding function values makes it more difficult 
to impose constraints on the functions. One approach is to 
add the desired constraints as a likelihood in the reverse 
SDE [40]. Our approach extends previous work in a manner 
more similar to hypernetworks, but with a network archi-
tecture that a priori satisfies the function constraints we 

Fig. 11  Heterogeneous materials in complex geometries produce 
maximum principal stresses that are qualitatively different from the 
uniform material cases. Samples of material properties � were gen-
erated around the observed parameters �̄ for either uniform material 
properties over the domain P or spatially varying properties �(x) over 
P . The baseline case is defined by material properties �̄ uniform over 
P , while soft and stiff cases are uniform properties but with the lower 

bound and upper bound of the properties � generated around �̄ . Base-
line, soft, and stiff MPS contours show stress concentration at corners 
(top). Heterogeneous fields �(x) controlled by the length scale � pro-
duce distribution of MPS with mean always greater than the baseline 
and confidence interval increasing with � (middle). Extreme cases of 
the MPS distribution from the heterogeneous properties are depicted 
(bottom)
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are interested in. One design choice is which weights and 
biases should be allowed to be random variables and which 
should be fixed parameters, or whether to introduce a latent 
space as in [43]. We found that varying the last layer of the 
NODE was flexible enough to capture the variability in the 
population. The rest of the weights and biases were shared 
among all members of the population, therefore providing 
the flexibility needed to capture the average response. The 
common weights and biases were treated as fixed parameters 
and estimated directly by minimizing a standard training 
loss. The approach was effective for hyperelasticity, but it 
is possible that more complex behavior, e.g. viscoplasticity, 
might require more sothisticated methods to avoid the curse 
of dimensionality.

Tissues have inherent variability in mechanical proper-
ties from one individual to another and even spatially within 
the same individual [57, 58], skin being a good example 
of this phenomenon [2, 59]. Clinically, uncertainty in the 
mechanical and biological response of skin has an impact on 
the resulting stress distributions after reconstructive surgery 
[60], or tissue expansion [28], to name a couple examples. 
Thus, any clinical decision making based on computational 
models of skin needs to account for the variability across 
individuals as well as heterogeneous material properties. 
The same is true for other tissues [26], and even beyond, for 
structural materials with similar heterogeneity [25, 27]. One 
of the challenges of trying to do uncertainty analysis for skin 
or other tissues is that the uncertainty might be too large to 
improve decision making with respect to current standard 
of care. Conditional generation of material responses given 
some observation for a new individual is an effective strat-
egy to improve computational models for clinical settings. 
Noninvasive techniques to estimate skin properties in vivo 
have emerged over the past decade [61–63]. However, data 
from these tests is usually not enough to fully characterize 
the material response [61, 64]. Our framework enables esti-
mation of the distribution of mechanical response across a 
population based on detailed mechanical test data, with the 
capacity to update the generation of new samples given new, 
simpler observations. We anticipate that this framework can 
help in clinical decision making by generating models of 
skin for a new individual based on abundant prior knowledge 
of the population that is captured by our generative model.

Modeling soft tissue as well as other soft materials can be 
enhanced by incorporating microstructure information such 
as imaging data or collagen content [65–67]. Microstruc-
ture information could be incorporated and used to learn 
a joint distribution between the NODE parameters and the 
microstructure-related data. Another approach would be to 
have a model (either a black-box function or a physics-based 
model) to go from microstructure data to NODE param-
eters. For a physics-based model, a likelihood term during 

the reverse SDE could guide NODE parameter generation 
conditioned on microstructure information.

For a given sample of a material, modeling spatial het-
erogeneity requires generation of spatially correlated fields. 
We showed that the reverse SDE of the diffusion process can 
be extended to generate these fields over complex domains. 
The key idea in standard diffusion models is that generation 
of new samples can be done starting from the standard nor-
mal distribution. We extended the reverse SDE by sampling 
functions f (x) from a Gaussian process with zero mean and 
unit variance in the kernel Eq. (12). Sampling from a GP for 
rectangular domains is trivial and can be done with many 
existing packages such as GPy [68]. For complex geom-
etries, we follow the eigen-expansion based on the Laplacian 
operator outlined in [44, 69]. One key question is whether or 
not the Euler-Maruyama scheme of the spatially correlated 
fields converges or not. A numerical investigation show-
ing convergence of the stochastic PDE 13 with respect to 
to number of samples, time step, and spatial resolution is 
provided in the Supplement.

Using the heterogeneous material fields we found that 
spatial heterogeneity had no impact on average response 
of square pieces of tissue under biaxial loading. Thus, we 
can conclude that for many ex vivo testing scenarios with 
uniform boundary conditions, it is safe to work with the 
average stress–strain data to train the generative model [70]. 
For complex tissues, e.g. three-dimensional solids such as 
myocardium or ligaments [65, 71], the full-field strain is 
needed in order to calibrate the model. For example, we 
show that for a toy problem with a P geometry, material 
heterogeneity amplifies stress concentrations with respect 
to the uniform material case, and this amplification depends 
on the length scale of the heterogeneity. Future work should 
focus on the inverse problem of learning the length scale and 
material properties given the full-field strain and boundary 
conditions.

This work is not without limitations. The framework 
is focused on hyperelasticity but tissues can have more 
complex mechanical behavior such as viscoelasticity, dam-
age, fracture, etc. [72, 73]. We have previously extended 
the data-driven framework based on NODEs to capture 
viscoelasticity [36]. Ours is also not the only data-driven 
method for constitutive modeling of tissues [12, 15, 74]. 
It remains to test whether the generative framework can 
be easily extended to the more complex behaviors, and 
whether other architectures besides NODE yield similar 
results to what we show here. Another limitation is that 
we work with average response and not full-field strain 
data. We show that this is adequate for the type of ex vivo 
tests we are concerned with and under some assump-
tions on length-scale ranges and smoothness of the field, 
but would not apply to three-dimensional tissues with 
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non-uniform boundary conditions or materials with dis-
continuities. Thus, additional work is needed to set up the 
probabilistic modeling framework that directly deals with 
heterogeneous strain fields during density estimation. The 
third limitation to point out is the limited experimental 
data. For murine skin we had stress–strain response from 
15 mice. However, as seen with the synthetic example, 
which is based on a popular material model [48], up to 100 
samples might be needed to estimate the material model 
across a population. Nevertheless, the synthetic example 
also shows that even with limited data the framework can 
estimate reasonable parameter distributions. These results 
underscore the need for more tissue stress–strain data 
repositories with very clear protocols and annotations in 
order to enable the proper training of probabilistic models.

5  Conclusions

We have presented a novel framework for generative 
hyperelasticity. Our framework satisfies physical con-
straints by construction, such as polyconvexity and objec-
tivity, which enables us to run finite element simulations 
with convergence guarantees. Combined with diffusion 
probabilistic models, our method is able to capture the 
typical variability observed in the experimental response 
of materials such as soft tissues. By itself, this is a use-
ful result that can be used for uncertainty quantification 
in simulations. We take the approach one step further by 
creating spatially correlated, but heterogeneous, material 
properties in a fully data-driven way. We observe that the 
length scale of the correlation has a major effect on the 
probability distribution of the maximum stress obtained, 
which could lead to different design or clinical decisions. 
Overall, we believe this a major step forward to make data-
driven methods useful in engineering practice.
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