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Micromechanical modelling of carbon
nanotube reinforced composite materials
with a functionally graded interphase

Vahidullah Taç and Ercan Gürses

Abstract

This paper introduces a new method of determining the mechanical properties of carbon nanotube-polymer com-

posites using a multi-inclusion micromechanical model with functionally graded phases. The nanocomposite was

divided into four regions of distinct mechanical properties; the carbon nanotube, the interface, the interphase and

bulk polymer. The carbon nanotube and the interface were later combined into one effective fiber using a finite

element model. The interphase was modelled in a functionally graded manner to reflect the true nature of the portion

of the polymer surrounding the carbon nanotube. The three phases of effective fiber, interphase and bulk polymer

were then used in the micromechanical model to arrive at the mechanical properties of the nanocomposite.

An orientation averaging integration was then applied on the results to better reflect macroscopic response of

nanocomposites with randomly oriented nanotubes. The results were compared to other numerical and experimental

findings in the literature.
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Introduction

Discovered in 1991 by Iijima,1 carbon nanotubes
(CNTs) are the strongest and stiffest materials dis-
covered to date2–6 in addition to having outstanding
electrical and thermal properties.7 While, as of yet,
macro-scale use of CNTs in their pristine state remains
distant, they are already revolutionizing the materials
industry with their role as reinforcements in polymer-
based composite materials.8–16 There has been a plethora
of research articles focusing on the modelling and the
determination of the mechanical properties of CNTs
since their discovery using a multitude of methodologies
ranging from the finite element method, micromechanics
and atomistic simulations to experimentations.7,17,18

Among these, micromechanics offers quick and easy,
yet powerful tools for analysis of nanocomposites.

The vast majority of micromechanical models used for
simulating CNT composites are based on the Mori–
Tanaka model19 and usually portray the composite
using two or three phases, which includes the CNT,
matrix (polymer), and the interface.11,12,14,20 Latest
experimental and molecular mechanics studies of CNT-

polymer composites indicate that there are at least four
phases in such a composite; the CNT, the interface, the
interphase and bulk polymer.8,21,22 The term phase refers
to semi-ellipsoidal regions of distinct mechanical charac-
teristics in an Eshelby-type micromechanical model.23

The interface refers to the thin gap separating the CNT
from the polymer and it is dominated by Van der Waals
forces in non-functionalized nanocomposites.14,24,25 The
presence of the CNT modifies the polymer such that it
has a higher density near the nanotube, but the density
gradually decreases in the radially outward direction from
the nanotube longitudinal axis until matching that of
bulk polymer.14,21,25 This region of variable density is
referred to as the ‘‘interphase’’ to distinguish it from the
bulk polymer phase which consists of plain polymer with
mostly constant mechanical properties and density. The
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variable nature of the interphase prompts the use of func-
tionally graded phase models in micromechanical model-
ling of such composites.

In this study, we employed a multi-phase micromecha-
nical model with a functionally graded interphase to
accurately model CNT composites. We first identified
and characterized the four distinct phases in the compos-
ite. We then merged the CNT and interface phases into a
single phase that we call the effective fiber. We obtained
the properties of this composite phase from finite element
analyses. The interphase was modelled in a functionally
graded manner using constant, linear and exponential
functions for comparison. The outputs of the three-
phase micromechanical model for a single effective fiber
were homogenized using an orientation averaging algo-
rithm and the end results were compared to experimental
and computational data available in the literature.

Micromechanical model

The micromechanical model used in this study is
adopted from Li 26 and it is a Mori–Tanaka19 type
multi-inclusion model based on Hori and Nemat-
Nasser’s double-inclusion model.27 Like most other
self-consistent models, this model relies on two import-
ant conclusions reached by J.D. Eshelby in a series of
papers.23,28 Eshelby concluded that the strain inside an
ellipsoidal inclusion embedded in an elastic body is lin-
early related by the Eshelby tensor to the uniform far
field strain in the elastic body, and that this strain is
uniform in the inclusion,29 i.e.

h"iI ¼ Ah"iV ð1Þ

where the h�i operator shows volume average, sub-
scripts I and V refer to the inclusion and the matrix,
and A is a function of the Eshelby tensor S. Eshelby

tensor can be readily calculated for inclusions that are
embedded in an elastic domain.23

This principle has been further exploited by Hori
and Nemat-Nasser in a recursive formulation to include
double inclusions, i.e. inclusions inside other inclusions.

The model posits multiple semi-ellipsoidal elastic
phases embedded in an infinite domain to arrive at
the mechanical properties of the composite material.
The ellipsoids having dimensions a1, b1, c1 for the first
inclusion, a2, b2, c2 for the second inclusion, etc. are
assumed to be coaxial, perfectly aligned and of similar

shape, so that a1
a2
¼ b1

b2
¼ c1

c2
¼ �. A schematic representa-

tion of the micromechanical model is given in Figure 1.

The average elastic moduli, C, of the composite con-
sisting of n phases are given as

C ¼ Cinf Iþ S� Ið Þ�½ � Iþ S�½ �
�1

� ¼
Xn
i¼1

fi�i

ð2Þ

where I is the symmetric fourth-order unity tensor, S is
the Eshelby tensor for the ellipsoidal inclusion,23 Cinf is
the moduli tensor of a fictitious infinite domain. This
infinite domain is needed for proper operation of the
function. The moduli of this medium were obtained via
an iterative process, i.e. some initial guesses were
assigned to them and then they were varied until they
match the elastic moduli of the resulting composite, C.
In this study, n is set to either 3 or 4 depending on the
assumption of number of phases. � has to be calculated
separately for every phase. If a phase has uniform elas-
ticity throughout, � is defined as

�i ¼ Cinf
� Ci

� ��1
Cinf
� S

h i�1
ð3Þ

Figure 1. Graphical representation of the multi-inclusion micromechanical model.
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Using an integration procedure, this value of � can
be extended to phases of radially varying elasticities by
assuming there exist an infinite number of infinitesi-
mally thin ellipsoidal shells that together form one
large ellipsoidal phase of varying properties. The inte-
gration is shown in Li26 and is reported here

�i ¼
3

1� �3

Z 1

�

r2�i rð Þdr

�i ¼ Cinf
� CiðrÞ

� ��1
Cinf
� S

h i�1 ð4Þ

Note that the strain concentration tensor, A and �
represent alternative formulations of the same problem
and one can be achieved in terms of the other, as shown
in Hori and Nemat-Nasser.27

Also note that for a three-phase model specifying �
and the volume fraction of the matrix f3 also define the
volume fractions of the remaining two phases which
can be calculated as follows

f1 ¼ 1� f3ð Þ�3

f2 ¼ 1� f3ð Þ 1� �3
� � ð5Þ

Orientation averaging integral

Orientation averaging integration is an operation used
to determine the average value of a tensorial term over
all orientations defined by transformation from the
local fiber coordinates to global coordinates. The orien-
tation averaging integral of a tensor A is denoted as
5A4 and is defined as

5A4 ¼

R �
��

R �
0

R �=2
0

�A �, �, ð Þ g �, ð Þ sin �ð Þd�d�d R �
��

R �
0

R �=2
0 g �, ð Þ sin �ð Þd�d�d 

ð6Þ

where

�Aijkl ¼ cipcjqckrclsApqrs ð7Þ

cij are the direction cosines for the transformation and g is
the orientation distribution function defined as follows30

g �, ð Þ ¼ exp �s1�
2

� �
exp �s2 

2
� �

ð8Þ

s1 and s2 are parameters that control the orientation.
Three interesting combinations of s1 and s2 are

as follows

Random

orientation

s1 ¼ 0 s2 ¼ 0 g �, ð Þ ¼ 1

Aligned

orientation

s1 ¼ 0 s2 ¼ 1 g �, ð Þ ¼ �ð�� 0Þ�ð � 0Þ

Axisymmetric

orientation

s1 ¼ k s2 ¼ 1 g �, ð Þ ¼ exp½�k�2��ð � 0Þ

where �ðx� x0Þ is the Dirac’s delta function. In terms
of nanocomposites, the three orientations correspond
to the cases in which the nanotubes are randomly and
evenly distributed, completely aligned in a single direc-
tion or partially aligned in a single direction, respect-
ively. The orientation averaging integral was applied to
the moduli of the composite material obtained in the
previous part using random orientation.

Phases of the nanocomposite

CNTs

The moduli of CNTs are usually obtained through
experimental methods such as Raman stereoscopy,4,6

finite element method,3,9,31 or atomistic simulations
such as molecular mechanics.5,10,14 It is commonly
held that CNTs behave in a transversely isotropic
manner around the axis of the tube and have a modulus
of close to 1 TPa in the longitudinal direction.4–6 Tsai
et al.,14 for example use molecular mechanics to obtain
the moduli of three single-walled zigzag CNT speci-
mens with radii of 3.9 Å, 5.5 Å and 7.1 Å and then
use energy equivalency methods to replace the CNT
with a solid cylinder of similar dimensions. We bor-
rowed their results to be used in our micromechanical
model as reported in Table 1.

Interface

The properties of the interface between CNT and poly-
mer could be computed through atomistic simulations
such as molecular mechanics. The interface is an empty
space of approximately 3.4 Å thickness dominated by
Van der Waals forces but it is sometimes simplified as a

Table 1. Mechanical properties of carbon nanotubes.

Radius

[Å]

E1

[GPa]

G12

[GPa]

�12

[�]

E2

[GPa]

�23

[�]

3.9 1382.5 1120 0.272 645 0.2

5.5 981.5 779.2 0.27 504 0.2

7.1 759.9 596.3 0.27 425 0.2

Note: Data obtained from Tsai et al.14
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region of isotropic elastic properties.12,14,32 The stiffness
of the interface depends on many factors like type of
polymer, CNT and whether there is chemical functio-
nalization or polymer grafting around the CNT.
The interface is expected to be stiff in the presence of
functionalization and soft in its absence. To this end,
we study the interface using two models; one soft and
one stiff. The Young’s moduli corresponding to the two
models are set at 0:3EBP and 5EBP, respectively, while
the Poisson’s ratio was kept constant at �BP, in terms of
bulk polymer (BP) moduli. A similar study was previ-
ously performed in Wan et al.22

Effective fiber

Mori–Tanaka-based micromechanical models assume
there are multiple inclusions in the composite in the
form of ellipsoids scattered all over the composite33,34

as shown in Figure 2(a), while in reality the phases of a
nanocomposite are nested as shown in Figure 2(b).

While the model used in this study is originally con-
structed for nested composites, this is not true for com-
posites where the inclusions have the same aspect ratio
as shown in Wang et al.34 which is always the case when
the phases include the interface and the interphase. This
behavior of Mori–Tanaka-based models means that the

Figure 3. Finite element models consisting of CNT and the interface (left), and effective fiber (right). CNT: carbon nanotube.

Figure 2. Schematics of micromechanics phase distributions. Mori–Tanaka-based models (a), and annular coated inclusion approach (b).
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true nature of a nanocomposite cannot be represented
accurately using such a model. The phase that is most
affected by this is the interface. The greatest impact of
the interface in a nanocomposite is through its role in
stress transfer from the polymer to the inclusion.
However, using the standard Mori–Tanaka approach,
this impact is diminished as the inclusion is not coated
by the interface. In order to tackle this problem, we
combined the CNT and the interface into a single
phase that we call the ‘‘effective fiber,’’ using finite
element modelling. This modeling approach enables
accurate representations of roles and contributions of
the individual phases to the average elasticity of the
nanocomposite. To this end, we constructed two finite
element models using Abaqus FEA for each CNT
radius as shown in Figure 3. One representing the
actual CNT-interface combination consists of two
coaxial and concentric cylinders. The inner cylinder
represents the CNT and the outer cylinder represents
the interface. The inner cylinder is completely sub-
merged within the outer cylinder by an offset corres-
ponding to the thickness of the interface on all
sides. The outer surfaces of the inner cylinder and the
corresponding inner surfaces of the outer cylinder are
then tied to each other assuming a perfect bonding.
C3D10 type elements were used with 22,000 elements
for the CNT-Interface model and 70,000 elements for
the effective fiber model. A mesh size study was per-
formed to make sure the solutions converge. Note that
the only parts of the nanocomposite modelled using
finite element modelling are the CNT and the interface,
while the interphase and the bulk polymer were
integrated using the micromechanical model. The
dimensions and material properties of the cylinders
are the same as those of the CNT and the interface,
respectively.

The second finite element model consists of only
one cylinder that has the same overall dimensions as
the first model. This FE model represents the effective
fiber. We assigned a transversely isotropic material and
initial guesses to the moduli of the effective fiber model.
We then subjected the two models to three loading
conditions and measured average displacement at the
surfaces of loading. We iteratively changed the moduli
of the effective fiber until the displacements of the two
models matched, thus obtaining the final elastic moduli
of the effective fiber. Note that for some loading scen-
arios, such as uniform tenion and twisting, there are
analytical solutions available in literature for transver-
sely isotropic linear elastic cylinders. Therefore, it is
possible to use these analytical solutions for some of
the anlayses of the effective anistropic fiber. However,
in this work, the analyses of the effective fibers for
all three load cases are performed with the finite elem-
ent method in order to keep the approach also

applicable for load cases where there are no analytical
solutions available.

Young’s modulus E1 in the longitudinal direction. To obtain
the Young’s modulus, we subjected the two FE models
to longitudinal compression by applying a pressure on
one end of the model and applying a symmetry bound-
ary condition on the other end. Then the average ver-
tical displacement of the top surface of the model was
used to adjust the Young’s modulus of the effective
fiber. This loading scenario is summarized in Figure 4.

Young’s modulus E2 in the transverse direction and Poisson’s

ratio �12. Transverse Young’s modulus and the accom-
panying Poisson’s ratio were obtained by subjecting the
two FE models to transverse compression. On one end
of the models, a symmetry boundary condition was
applied as shown in Figure 5. Then the moduli of the
effective fiber were changed iteratively until the average
axial and radial displacement components matched
those of the CNT-interface FE model.

Shear modulus G12 and Poisson’s ratio �23. Out-of-plane
shear modulus of the effective fiber required the twisting
of the FE models. To this end, we applied a distributed
torsional load at one end of the model and a fixed
boundary condition at the other end. The average
radial displacement of the outermost circle of top surface
was then taken as the control variable based on which
shear modulus G12 of the effective fiber was adjusted.
This loading scenario is depicted in Figure 6. In the
finite element analyses, it was noted that Poisson’s

Figure 4. Loading conditions used to obtain the longitudinal

modulus of the effective fiber.
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ratio �23 does not significantly affect the behavior of the
model in any of the loading conditions so far.
Consequently, we first assumed values of 0.2 and 0.4
for �23 and observed that the change does not signifi-
cantly affect the properties of the nanocomposite in the

micromechanical model. Hence, a value of 0.2 was
assigned to �23 as was done in Tsai et al.14

The elastic properties of the effective fiber for
the three CNT specimens and two interface models
were computed by the procedure explained above.
The results are reported in Tables 2 and 3.

Interphase. The interphase is a part of the polymer in
the direct vicinity of the CNT that has elevated densi-
ties due to the presence of the CNT. It is assumed that
the interphase has a location dependent isotropic elastic
behavior in which the stiffness starts from a higher
value in the inner boundary and decreases in the radi-
ally outward direction until reaching the stiffness of the
polymer.14,21,35,36 We modelled the change using three
functions of constant, linear and exponential behavior.
The chosen exponential function is as follows

E xð Þ ¼
E2 � E1

e�	 � 1
e�	x � 1ð Þ þ E1 ð9Þ

where x ¼ 0 and E ¼ E1 at the inner boundary and
x ¼ 1, E ¼ E2 at the outer boundary of the interphase,
and a is a parameter that controls the rate of exponential
decay. The Young’s modulus was assumed to be equal to
the longitudinal Young’s modulus of the effective fiber at
the inner boundary, i.e., E1 ¼ E1,ef, and that of the poly-
mer at the outer boundary, i.e., E1 ¼ Epol, for linearly
and exponentially varying models of the interphase.
The Poisson’s ratio of the interphase was assumed to
stay constant. Many highly contrasting values have
been reported for the thickness of the interphase from

Figure 5. Loading conditions used to obtain the transverse

modulus and Poisson’s ratio n12 of the effective fiber.

Figure 6. Loading conditions used to obtain G12.

Table 2. Elastic moduli of the effective fiber using the stiff

interface model.

CNT

radius [Å]

E1

[GPa]

E2

[GPa]

G12

[GPa]

�12

[�]

�23

[�]

3.9 113.0 38.0 40.0 0.32 0.2

5.5 112.0 19.6 49.0 0.32 0.2

7.1 73.2 17.0 39.0 0.34 0.2

CNT: carbon nanotube.

Table 3. Elastic moduli of the effective fiber using the soft

interface model.

CNT

radius [Å]

E1

[GPa]

E2

[GPa]

G12

[GPa]

�12

[�]

�23

[�]

3.9 14.7 3.81 4.5 0.33 0.2

5.5 14.0 2.01 3.8 0.61 0.2

7.1 13.2 1.84 2.8 0.90 0.2

CNT: carbon nanotube.
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3 Å to 25.5 Å; however, there seems to be a general
consensus that the thickness of the interphase is inde-
pendent of the radius of the CNT.21,25,37 Interphase
and composite Young’s modulus distribution is given
schematically in Figure 7.

Bulk polymer. The elastic modulus of the bulk polymer is
not very crucial because stiffening effects of the CNT
are usually studied relative to base, or polymer modu-
lus. However, selection of a polymer from which nano-
composites have been synthesized and tested enables
one to make comparisons with experimental data. As
such a polymer named LARC-SI has been adopted
which has a Young’s modulus of 3.8GPa and
Poisson’s ratio of 0.4.8

Results and discussion

The interphase occupies a very large portion of the
nanocomposite. It can become the biggest phase in
the nanocomposite surpassing even bulk polymer
depending on the thickness of the interphase. This
means the modulus of the composite heavily depends
on the behavior of the interphase. Figure 8 shows how
the Young’s modulus of the composite increases with
respect to that of the polymer when different distribu-
tions of interphase modulus are used assuming a mod-
erate interphase thickness of 10 Å. A stiff interface
model was assumed in this figure. For the constant dis-
tribution, the Young’s modulus of the interphase was
set to the average of the longitudinal Young’s modulus
of the effective fiber and the Young’s modulus of
the polymer. It is immediately visible that a constant
distribution does not reflect the true nature of the com-
posite, as it appears to cause the stiffening of the com-
posite to increase manyfold, which is not realistic.
On the other hand, an exponential distribution of the
interphase modulus results in a much more realistic
stiffening envelope. While linear distribution also

0
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1.5
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2.5

3

3.5

3.5 4 4.5 5 5.5 6 6.5 7 7.5

E/
E BP

CNT Radius (Å) 

Constant IP Modulus

Linear IP Modulus

Exponen�al IP Modulus with a=5.0

Exponen�al IP Modulus with a=10.0

Figure 8. Young’s modulus of nanocomposite with %1 vol. effective fiber normalized by that of the polymer vs. CNT radius using

various functions for interphase modulus distribution. CNT: carbon nanotube.

Figure 7. Representative Young’s modulus distribution across

the micromechanical model.

Taç and Gürses 4343



seems to give reasonable results, it lacks the versatility
of the exponential distribution with the parameter a.
The use of an exponential distribution of interphase
moduli over the other two alternatives is further moti-
vated by the observations made in the literature14,21,38

that suggest the density distribution of the interphase
from the interface to the bulk polymer resembles an
oscillatory curve with a quasi-exponentially decaying
mean. Henceforth, an exponential distribution will be
used for the Young’s modulus of the interphase.

It appears from Figure 8 that for the same volume
fraction the stiffening effect of the CNT diminishes with
increasing CNT radius as previously reported in the
literature.12,14,39 There are two underlying reasons for
this. First as a single walled CNT (SWCNT) gets bigger
in terms of radius, its effective moduli diminish.
Because as the radius grows, so does the empty space
inside the CNT. Secondly, as the radius of a CNT
grows, the ratio of its surface area to its volume
decreases, resulting in decreased contact and adhesion
area with the polymer for a given volume fraction.

Figure 9 depicts how the stiffening ratio, E=EBP,
changes with respect to CNT volume fraction for vari-
ous CNT radii on a log-lin graph and compares it to
some experimental and numerical data available in the
literature.8,22,40–47 Experimental studies are represented
with black markers, while numerical ones are in gray.
Interphase thickness, tip, is increased from 3 Å to 5 Å

and to 10 Å to observe how interphase thickness affects
the results, while parameter a is set at 1. Note that as
the thickness of the interphase increases, the stiffening
ratio considerably grows. This is because the interphase
is a stronger phase compared to the bulk polymer and
hence fulfills a strong role in stiffening of the composite
besides the CNT. Increasing the volume fraction of the
CNT appears to exponentially increase the stiffening
ratio, while at low volume fractions, this behavior is
reasonable, and non-dilute effects are expected to
start hampering this trend in higher volume frac-
tions.33,39 While interphase thicknesses of 3 Å and
5 Å seem to accurately represent some studies found
in the literature such as those by Weisenberger et al.,44

some findings of Wan et al.,22 Zhu et al.46 and Hu
et al.,47 it is safe to suggest that most findings can be
better represented by an interphase thickness of 10 Å.

The analyses so far assumed that the CNTs are ran-
domly distributed in the composite. Such a distribution
results in moderate moduli of isotropic nature.
However, if there is a nontrivial degree of alignment,
the nanocomposite starts to show anisotropic behavior,
with a stiffer reaction in some directions and weaker in
others. Figure 10 is a plot of Young’s modulus (E) in
the longitudinal (E1) and transverse (E2) directions as
well as shear modulus (G, G12), for aligned and
random distributions using a ¼ 1 and tip ¼ 5 Å.

Length of CNTs has a significant effect on the adhe-
sion, and thereby, composite mechanical properties.
However, the adhesion properties of the CNT saturate
when it reaches a certain length. CNT length is repre-
sented in terms of the aspect ratio in the micromecha-
nical model. To study this effect, we set the inclusion
shapes such that a ¼ b,AspectRatio ¼ c

b ¼
c
a. As seen in
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Figure 9. Improvement in polymer Young’s modulus vs. CNT

vol.% for various CNT radii and interphase thicknesses, tip, for

a¼ 1. Numerical studies are given in gray markers, while

experimental ones are in black. CNT: carbon nanotube.
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the plot of Figure 11, aspect ratio significantly impacts
the stiffening effect of the CNT at aspect ratios lower
than 20. This is in line with previous observations
reported in Ashrafi and Hubert.48 This plot was
obtained using a ¼ 1, tip ¼ 5 Å, a CNT radius of
3.9 Å and 1% effective fiber by volume.

The contribution of each phase to the stiffness of the
nanocomposite was studied in Figures 12 and 13 for the
case of stiff and soft interface models. The figures also
compare the effective fiber method of this study to a
purely micromechanical four-phase model that does
not consider the nested quality of the phases. These
graphs were obtained by starting from a pure polymer
and then introducing the rest of the phases step by step
while computing composite stiffness in each step. The
figures show three sets of two columns each. The left

column in each set represents the results of the model
with an effective fiber characterized by FEM analyses,
while the right column is the result of the four-phase
purely micromechanical model.

Figure 12 shows that the contribution of the inter-
phase starts from small quantities but rises to match
that of the CNT even at an interphase thickness of
10 Å. Note that the whole contribution of the interface
in this figure is not the area marked with dark gray, but
the height difference between the two columns in each
set is also caused due to the fact that the interface soft-
ens the effective fiber even when using a stiff interface
model. This is seen as a justification for the use of the
current, effective fiber model.

On the other hand, using a soft interface results in
nanocomposites where the contribution of the CNT
and the interface is marginal. Instead the interphase
becomes the main reinforcement phase in the nano-
composite. However, it should be noted that in this
figure the interphase model was not changed between
the stiff and soft interface models, as opposed to
setting the moduli of the interphase in the inner
face equal to those of the effective fiber with soft inter-
face. This is because doing so results in no reinforce-
ment at all. And it is deemed unlikely that the
properties of the interface would significantly alter
the properties of the interphase. Since the CNT and
the interface have little contribution to the stiffness of
the nanocomposite, these phases can be omitted from
the equation altogether in the case of a soft interface.
This is because a soft interface cannot effectively
transfer stresses from the polymer to the CNT.
In physical terms, this is an indication that two differ-
ent models should be used for nanocomposite charac-
terization depending on the presence of polymer
grafting or functionalization around the CNTs.
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For nanocomposites with polymer grafting or functio-
nalization, the full methodology laid out in this study
should be implemented including the FE method for
finding effective fiber properties; however, in the case
of pristine CNTs, the FE analyses step can be skipped
and the CNT and IF phases omitted. Similar findings
can be found in the works of Malagù et al.21

Conclusions

An up-close analysis of the constituents of nanocompo-
sites revealed that there are at least four different
regions in a nanocomposite that have distinct proper-
ties and roles. These are the CNT, the interface, the
interphase and the bulk polymer. It was found that
the major contribution of the interface comes from its
role in stress transfer to the fiber. The interface is the
weakest link in the system even assuming other stress
transfer mechanisms such as polymer grafting and
CNT functionalization are present. This effect was
incorporated into our analyses using the finite element
method by merging the CNT and interface phases into
one. It was also found that, as opposed to the estab-
lished notion in the literature, the CNT is not the only
significant stiffening agent in the nanocomposite.
On the contrary, the interphase which is a region of
the polymer with modified properties due to the pres-
ence of the CNT also plays a key role in stiffening of the
composite as reported in Malagù et al.21 and Herasati
et al.25 The study shows that it is important to take the
roles and behaviors of the region surrounding the CNT
into effect when modeling CNT composites to achieve a
high level of fidelity. The three-phase model used in this
paper together with an effective fiber obtained through
FEM results in composite moduli that are very similar
to experimental results found in literature.
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