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Abstract

Soft tissue mechanical behavior and its change with age, physiological adap-
tion, and disease, are key to our health and survival. Soft tissues are divided
in four main categories, epithelial, muscle, connective, and nervous system
tissues. Different types of tissues have unique composition and microstruture
to perform their specific functions. Musculoskeletal and connective soft tis-
sues, in particular, have evolved to address important mechano-physiological
needs. All soft tissues, whether or not their primary function is mechanical
in nature, show extreme mechanics, with large deformation, nonlinear stress-
strain stiffening, various modes of energy dissipation such as viscoelasticity
and damage, and, most remarkably, show the ability to adapt to external
stimulus through growth and remodeling. This chapter outlines the essen-
tial theoretical frameworks for modeling the complex behavior of soft tissue.
The role of data-driven tools as well as the soft tissues that have received
increasing attention in recent years are also discussed.

Keywords: Tissue biomechanics, hyperelasticity, hyper-viscoelasticity,
fractional viscoelasticity, continuum damage mechanics, growth and
remodeling, reactive mixtures, mechanobiology, multiscale modeling,
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1. Introduction

Soft tissue mechanical response and its change with aging, physiologi-
cal adaptation, and disease, are key to our health, well-being, and survival.
There are four main types of soft tissue: epithelial, muscle, connective, and
nervous system tissues [1]. Each of these types has their unique function,
which is also reflected in composition, structure, and mechanical response.
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Epithelial tissues are highly cellular. They line various organs and constitute
the bulk of glandular organs [2, 3]. Epithelia serve transport regulation roles
[4]. For example the epithelial linings of arteries and intestines are tasked
with exchange of nutrients and chemical signals between two interfaces [5].
Epithelial tissue in organs such as pancreas or liver secrete important hor-
mones such as insulin and insulin-like growth factor 1 respectively. Despite
a predominant transport role, epithelial tissue show complex mechanical re-
sponse that allows them to operate effectively at large deformations [2]. Cell
packing in epithelial tissue and overall epithelial tissue geometry are also
remarkably intricate and entail complex morphogenetic programs in which
mechanics plays a central role [6]. Muscle tissues give the active force needed
for locomotion. Muscles, together with tendons, ligaments and cartilage are
the soft tissues directly involved with locomotion [7]. Muscles have a unique
active unit called the sarcomere, which shortens upon electrical activation,
developing large amounts of tension along the muscle fibers [8, 9]. Muscle
attaches to bone through tendons, a type of connective tissue; and ligaments,
another connective tissue, connect two bones directly [10]. Cartilage tissue
is located at the end of bones, and is important for bone-to-bone motion
by enabling a low friction interface at joints [11]. Cartilage complex mi-
crostructure also allows for shock absorption [12]. Connective tissues are
the most varied because they have a supportive role to all different kinds
of tissues. For example, another connective tissue is the dermis in the skin.
Other examples include the connective tissue in the intermediate layers of
the arteries, heart valves, the amnion during pregnancy, among other ex-
amples [13, 14, 15]. Connective tissues are collagen based, giving them the
ability to support structural function. The tissues of the central nervous sys-
tem do not have a mechanical support role. Nonetheless, their mechanical
response is important in the context of injury, e.g. traumatic brain injury
[16, 17]. Morphogenesis and degeneration of central nervous system tissues
also entails extreme mechanics [18]. In summary, soft tissues have a wide
range of structure and function. In some cases the function is indeed biome-
chanical in nature, while in other cases, even if the tissue does not serve a
primary mechanical role, it still has to show extreme mechanical response
and mechanobiological adaptation.

Soft tissues undergo large deformation and show nonlinear stress-strain
response. Thus, linear elasticity is ruled out as a suitable framework to de-
scribe soft tissue mechanics [19]. A common starting point to model soft
tissue is hyperelasticity. While there are some connections in the literature
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to linear elasticity theory, e.g. references to Poisson ratio and Young’s mod-
ulus, these properties do not truly describe the finite deformation regime
and nonlinearity of soft tissue and should be treated as rough albeit useful
approximations [20]. In addition to hyperelastic behavior -which assumes a
strain energy potential such that unloaded tissues return fully to their orig-
inal state upon unloading-, inelastic behavior of soft tissue is also essential
[21]. Examples of inelastic response includes damage degradation, viscoelas-
ticity, and fracture. All these problems have to be modeled in the context of
finite deformations [22].

Tissues are hydrated materials. In some cases it is possible to ignore the
fluid phase of tissues and focus on their mechanics as a homogenized solid.
However, for some tissues and in particular contexts, the relative fluid trans-
port in the tissue with respect to the solid matrix is key for understanding
the response under compression, dynamic loading, volume changes, and drug
transport [23]. For instance in cartilage, multi-phasic theories are needed to
explain the performance of this tissue in compression at our joins [24, 25].
Bi-phasic theories are also needed for subcutaneous tissue in the context of
drug delivery [26, 27].

Soft tissues often show anisotropy. Ultimately, the macroscopic mechan-
ical response of tissues is a reflection of their microstructure. For connective
and musculoskeletal tissues such as ligaments and tendons, the most promi-
nent microstructure feature is the alignment of collagen fibers which consti-
tute the majority of the dry weight of these tissues [28]. Preferred collagen
orientations are usually linked to the tissue’s mechanical function [29, 30].
For instance, in tendons and ligaments, the loading direction along a particu-
lar direction coincide with the collagen fiber reinforcements in that direction.
Nevertheless, some ligaments can exhibit complex fiber alignment if they are
subject to complex loading modes, e.g. the ligaments in the knee joint twist
around rather than connecting the femur and tibia in a straight line [31].
Epithelial tissues tend to show isotropic or transversely isotropic response
because cell packings tend to be isotropic in a bulk tissue such as adipose
tissue, or they form a thin membrane with mostly isotropic properties on
the plane of the membrane [3, 2]. Brain is also mostly treated as isotropic,
although there is some role of axons in the mechanical response which can in-
troduce mild anisotropy [32]. In muscles, sarcomeres also arrange into fibers
with well-defined orientations, leading to anisotropic or transversely isotropic
behavior [8].

What truly distinguishes tissues from many structural materials is their
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ability to adapt to mechanical cues over time. This phenomenon is termed
growth and remodeling [33]. Tissues are alive. At the microscopic scale, cells,
the units of life, on the order of tens of microns, sense and respond to their
immediate microenvironment by deposition new material, degrading existing
material, and exerting forces that permanently change the microstructure
geometry over time [34, 35, 36].

Organ systems, even small ones, contain multiple tissues tightly packed
together. For example skin protects us mechanically from the environment,
regulates transport exchange with the outside world, and also has a role in
thermal regulation and the sense of touch [37, 38, 39, 40]. To do so it requires
multiple substructures. Skin has a top epithelial layer of keratinocyte cells,
a connective tissue layer below, the dermis, which is the load bearing layer,
and a subcutaneous layer made of an adipocyte cell packing below, with a
primary role in thermal regulation and energy storage. Appendages in skin
such as glands, touch receptors, and hair follicles, endow this tissue with
its wide ranging set of functions [41]. Even trying to focus on the dermis
alone, regional changes in collagen ultrastructure as well as other factors of
structural composition of the tissue lead to different mechanical behavior
from one location to another [42]. Thus, a common strategy to model soft
tissue is through multiscale approaches [43].

The chapter is divided as follows. From a theory of mechanics standpoint
we build up in complexity, starting from hyperelastic modeling, we move
on to viscous response, then to damage. We then switch to multi-phasic
theories. The problem of active elements, primarily for muscle tissue, is
introduced next. This is followed by reviewing modeling frameworks for the
unique capacity of tissue for growth, remodeling and wound healing. This
is not the end of the chapter, as we reserve a last section to highlight new
modeling frameworks that reflect recent trends in data-driven modeling and
machine learning for computational mechanics. Throughout the chapter,
we state both the general equations of a given theory, and then emphasize
specific models used in the context of soft tissue biomechanics.

2. Hyperelastic behavior

Hyperelasticity is formally defined in terms of an energy potential that
allows us to relate the stress at a point in the material to the deformation
at that point. If we denote the first Piola Kirchhoff stress with P and the
deformation gradient with F, then hyperelasticity posits the existence of a
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scalar-valued potential function known as the strain energy density function
(SEDF) [44], denoted as Ψ(F), such that

P =
∂Ψ(F)

∂F
. (1)

The most important implication of this equation is that in hyperelasticity,
the relationship between deformation and stress is unchanging. This is as
opposed to other constitutive models such as viscoelasticity and continuum
damage modeling, where Ψ evolves with time, loading history or the state of
damage in the material (as we will see later on).

The deformation gradient F contains information both about stretching
and rotations of a point in the material, however, Ψ has to remain invariant of
rigid body rotations. To this end, the SEDF is often expressed as a function
of the right Cauchy-Green deformation tensor, C = F⊤F. Using this form of
the SEDF, the Second Piola Kirchhoff Stress, S, can be obtained as

Ψ = Ψ(C), S =
1

2

∂Ψ(C)

∂C
. (2)

2.1. Incompressible hyperelasticity

Eq. (2) provides the most general form of the relationship between C
and S in hyperelasticity when C is arbitrary. However, under the condition
of incompressibility, the elements of C are not arbitrary. In this case the
relationship between C and S has the following form [45]

S = 2
∂Ψ̂(C)

∂C
+ pJC−1 (3)

where p is a pressure Lagrange multiplier which can be understood as a
hydrostatic stress to resist compression, J = detF is the volume change
and Ψ̂ is a distortional energy function that depends on C only through the
isochoric part of C, i.e.,

Ψ̂(C) = Ψ(Ĉ)

Ĉ = (detC)−1/3C .

Using the relationship in Eq. (3) requires determining the pressure p.
In some special cases, such as biaxial deformation of a thin membrane un-
der plane-stress conditions, p can be determined from boundary conditions.
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However, this is not possible in general. Therefore, a nearly incompressible
approach is followed in most practical applications [46]. In nearly incom-
pressible hyperelasticity of soft tissue, the SEDF is constructed by adding a
volumetric term to the distortional energy, i.e.,

Ψ(C) = Ψ̂(C) + Ψvol(J)

Ψvol is simply a term that penalizes volume changes in the material (J =
1 corresponds to no volume change, while deviations from J = 1 signify
changing volume). The simplest form of Ψvol is given by

Ψvol =
1

2
K(J − 1)2 , (4)

with K a bulk modulus parameter. When this form of Ψvol is used, the
second Piola Kirchhoff stress can be obtained as

S = 2
∂Ψ̂(C)

∂C
+K(J − 1)JC−1. (5)

The only task that remains ahead before we can model the behavior of
a hyperelastic material is to specify a suitable form of Ψ̂. Ψ̂ has to satisfy
a number of mathematical and physical constraints to be admissible. First
and foremost, Ψ̂ has to be objective. Simply put, the principle of objectivity
states that the stress in the material must be independent of the frame of
reference. There are two widely used methods of satisfying this criterion:
1) using SEDFs that only depend on the principal (distortional) stretches,
λ̂1, λ̂2, λ̂3 (square roots of the eigenvalues of Ĉ) [47, 44], or 2) using SEDFs
that only depend on the tensor invariants of Ĉ [48].

Once a suitable form of Ψ̂ is determined, one can use either one of the
hypotheses of exactly incompressible hyperelasticity (Eq. (3)) or nearly in-
compressible hyperelasticity (Eq. (5)) depending on the application.

2.2. Principal stretch-based hyperelasticity

The most famous of the principal stretch-based models of hyperelasticity
is perhaps the model proposed by Ogden originally for rubber [49]. This
SEDF is widely and successfully used to model soft tissues that are isotropic,
such as fibrin clots, adipose tissue, and brain tissue [50, 51, 52, 47]. The
distortional SEDF in this model is given by

Ψ̂(λ̂1, λ̂2, λ̂3) =
N∑
p=1

µp

αp

(λ̂
αp

1 + λ̂
αp

2 + λ̂
αp

3 − 3), µpαp > 0 (6)
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where µp and αp, p ∈ {1, 2, ..., N}, are material parameters. As mentioned
previously, when dealing with nearly incompressible problems, this distor-
tional energy function is paired with a suitable volumetric energy function
(such as the one in Eq. (4)) to obtain the full strain energy function.

It has been shown that this form of the SEDF satisfies the relevant
physics-based constraints such as polyconvexity and thermodynamic con-
sistency [53].

2.3. Invariant-based hyperelasticity

In invariant-based hyperelasticity the distortional SEDF depends only on
the matrix invariants of Ĉ. The principal invariants of Ĉ are given as

Î1 = trĈ = Ĉ11 + Ĉ22 + Ĉ33

Î2 =
1

2
(Î21 − trĈ2)

The third invariant, Î3 = det Ĉ, is irrelevant since the determinant of the
isochoric part of C (i.e. Ĉ) is always equal to 1 by definition.

In addition to Î1, Î2, one can use a number of direction-dependent invari-
ants to model anisotropic material behavior. The simplest of these is given
as

Î4v = v0 · Ĉv0

where v0 is a vector in the reference configuration and Î4v is the anisotropic
invariant corresponding to v0 [54]. Î4v can also be interpreted as the square
of the stretch of the material in the direction v0.

One of the most widely used invariant-based models of soft tissue hyper-
elasticity is known as the GOH model [55] (Named after the authors Gasser,
Ogden and Holzapfel). In the GOH model, Ψ̂ is given as

Ψ̂ = C10(Î1 − 3) +
k1
2k2

∑
i=4v,4w

{
exp[k2(κÎ1 + (1− 3κ)Îi − 1)2]− 1

}
(7)

where Î4v and Î4w are anisotropic invariants pertaining to the material vectors
v and w, and C10, k1, k2 and κ are material parameters. The GOH model
is widely used because the exponential function captures nicely the strain-
stiffening response of collagenous tissues [56, 57]. Many other examples of
SEDF have been developed for specific tissues such as heart valves [58, 14],
skin [13, 59], cartilage [60], and ligaments [61], to name a few [56].
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2.4. Experimental characterization

To determine material parameters for hyperelastic models, uniaxial and
biaxial tensile tests are common [20, 62]. Uniaxial tensile tests are only
justified for isotropic or transversely isotropic materials such as adipose tissue
and ligaments [63, 64]. Biaxial tests are adequate for thin tissues that operate
physiologically under tension such as skin [20]. For bulk tissues such as
myocardium, triaxial testing is the most appropriate [65]. These testing
modes are usually paired with the assumption of homogeneous stress/strain
fields. Increased accuracy during parameter identification can be achieved
with inverse finite element methods and/or full-field strain measurements
[64, 66].

3. Viscoelastic behavior

Viscoelasticity is an energy dissipation mechanism. The two most natural
experiments or observations of viscoelastic behavior are creep and relaxation
[67, 68]. When a viscoelastic tissue is stretched to a given deformation,
the force required to maintain the deformation decreases over time, i.e. the
material shows stress relaxation [67]. If a constant force is applied to a
viscoelastic material, there will be an initial elastic deformation followed by
strain increase or creep over time [68]. The notion of energy dissipation
suggests that a good framework to describe viscoelasticity of soft tissue is
within an energy framework, considering contributions to the free energy
that come from the SEDF, as in hyperelasticity, as well as an elastic energy
that can change over time [69, 70]. However, before arriving at the energy
approach, other common alternatives are explained first [71]. Even though
the theory of linear elasticity is not applicable to soft tissue, some aspects
of linear elasticity, and in particular linear viscoelasticity, can be used in the
large deformation regime. Thus, we first present the framework of quasi-
linear viscoelasticity (QLV), before discussing its extension to the realm of
fractional calculus. The energy approach is described afterwards.

3.1. Quasi-linear viscoelasticity

Fung introduced the concept of quasi-linear viscoelastic behavior for soft
tissue [19]. As the name suggests, there are some aspects of this theory that
resemble the linear viscoelastic models. The second Piola Kirchhoff stress
can be expressed as a convolution integral of the instantaneous elastic stress
Se(t) and a relaxation function G(t),
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S(t) =

∫ t

0

G(t− s)
dSe

ds
ds. (8)

This is analogous to linear viscoelastic models, with the main difference
that the elastic stress in eq. (8) can be a nonlinear function of the deforma-
tion, for instance any of the hyperelastic models for tissue described above,
e.g. Eq. (7). The linear part of the name comes from the split of the stress
and the relaxation function, which appears linearly in the convolution inte-
gral (8). For tissue, as introduced by Fung and refined by others, a good
relaxation function is of the form [72],

G(t) =
1 +

∫∞
0

S(ξ)e−t/ξdξ

1 +
∫∞
0

S(ξ)dξ
(9)

with S(τ) a relaxation spectrum of time constants, for example S(τ) =
1/τ , i.e. a constant relaxation spectrum [73]. In other words Eq. (9) inte-
grates the contribution of a spectrum of relaxation times with exponential
decay. Normalization is needed so that the stress is bound by the instan-
taneous elastic stress Se. Relaxation functions are not entirely arbitrary,
they do need to satisfy certain physical principles and some intuition. For
energy dissipation, G(t) has to be a monotonically decreasing non-negative
function. Additionally, if fading memory is desired, then the function has to
be convex [74, 75]. One of the limitations of the approach is the choice of
the relaxation function, which might be difficult to determine for soft tissue.
Another limitation is the convolutional integral which requires integrating
over the entire history of loading. This can become computationally expen-
sive. An efficient numerical scheme is to consider only a finite expansion of
exponential dissipation terms [76],

G(t) = γ0 +
N∑
i=1

γie
−t
τi (10)

where γ0 = 1 such that the initial stress is S(0) = Se and γi are normalized
moduli. For a given exponential decay function, internal variable H(i) will
be used to keep track of the stress in branch i,

H(i) =

∫ t

0

e
−(t−s)

τi
dSe

ds
ds . (11)
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Adding up all the contributions to the stress from each of these viscoelastic
branches, the total stress at time t is

S(t) = Se(t) +
N∑
i=1

γiH
(i)(t). (12)

For a new time step n+1 corresponding to the time t+∆t, updating each
of the internal variablesH(i) is needed to update the stress. Due to the nature
of exponential functions, it can be verified that after some manipulation, the
update of the internal variable has the form [76, 77],

H i
n+1 = e

−∆t
τi H i

n +
1− e

−∆t
τi

(∆t/τi)
(Se

n+1 − Se
n). (13)

Thus, Eq. (13) updates all the internal variables, with the only unknown
in Eq. (13) the new instantaneous elastic stress Se

n+1, since all the other
information is just from the previous time step. The stress tensorSe

n+1, as
mentioned before, can be any of the nonlinear hyperelastic models used in
soft tissue model, e.g. the one defined in Eq. (7). For example, a viscoelastic
framework for ligaments, adipose, and other soft tissues, based on the con-
volution of a relaxation function and an anisotropic strain energy function is
developed in [61, 78, 79].

3.2. Fractional viscoelasticity

Recall the QLV framework, which relies on the convolutional integral of
the relaxation function times the rate of change of the stress

S(t) = Se(t) +

∫ t

0

G(t− s)
dSe

ds
ds . (14)

As mentioned earlier, one of the main difficulties of the QLV framework
is the numerical implementation, especially for non-exponential relaxation
functions. From experimental observations, exponential decay is not a re-
alistic description of tissue relaxation and, rather, power laws are expected
[80, 81]. Thus, the QLV approach can be extended to a more general evolu-
tion equation involving fractional derivatives,

S(t) = Se(t) +B0D
αSe , (15)

where Dα denotes the Caputo fractional derivative of order α ∈ (0, 1) [82]
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DαS =
1

Γ(1− α)

∫ t

0

(t− s)−αṠds , (16)

with Γ(◦) the Gamma function and ◦̇ the integer order derivative of the
function S. As can be seen from the convolution in Eq. (16), this model
incorporates power law decay. The advantage of this approach is that, due
to the inherent power-law behavior observed in tissues, the fractional deriva-
tive offers a very elegant and succinct description of the viscoelastic behavior
with a much smaller number of parameters [81]. Unlike exponential decay
approaches, which require a very large number of parameters (two per expo-
nential decay branch), the fractional approach condenses the response to the
fractional order α and a modulus B0 [83]. Numerical implementation does
require a Prony series expansion for memory efficiency of the convolutional
integral. The Prony series might require several terms in the expansion, typi-
cally on the order of 12 internal variables are needed for the Prony series[84],
but it should be emphasized that regardless of the Prony series, only two
parameters are needed to represent the rich relaxation behavior [84].

3.3. Finite deformation non-equilibrium viscoelasticity

One limitation of QLV is that it is not necessarily compatible with large
deformations far from thermodynamic equilibrium. Starting with the defi-
nition of the free energy it is possible to establish a robust theory for non-
equilibrium finite viscoelasticity [70, 69]. The free energy is thus expressed

Ψ = ΨM
EQ(C) + ΨF

EQ(C) + ΨM
NEQ(C

M
e ) + ΨF

NEQ(C
F
e ) (17)

with equilibrium (EQ) and non-equilibrium (NEQ) contributions. Fur-
thermore, just as in the hyperelastic case, the energy can be attributed to an
isotropic ground substance or matrix (M), and an anisotropic contribution
from fiber reinforcements (F , usually collagen). Each of these four terms
in (17) can have a very similar structure to the energies identified before,
e.g. Eq. (7). Note also that the equilibrium energy depends on the total
deformation C. In contrast, the non-equilibrium deformation naturally has
to be expressed in terms of internal variables that are used to keep track of
the dissipation over time. In the QLV case the internal variables were the
stresses H(i). Here, the internal variables are kinematic. The total deforma-
tion gradient can be split into the elastic and inelastic contributions for the
matrix and fiber
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F = FM
e FM

i = FF
e F

F
i , (18)

just as originally introduced for finite plasticity [85, 86]. The split of the
deformation gradient leads to the corresponding deformation tensors C =
F⊤F,Ce = F⊤

e Fe,Ci = F⊤
i Fi. The combination of the multiplicative split

of the deformation and the additive split of the energy has been successfully
used to model a variety of soft tissue such as cardiovascular tissue, cornea, and
skin [87, 88, 89]. The dissipation inequality leads to the following condition
for the rate of change of the inelastic deformation [90]

−2
∂Ψ

∂CM
i

:
1

2
ĊM

i − 2
∂Ψ

∂CF
i

:
1

2
ĊF

i ≥ 0 . (19)

Alternatively, Eq. (19) can be turned into a requirement for the rate of
change of the elastic deformation. Furthermore, requiring that both terms
of Eq. (19) are satisfied independently, i.e. that the matrix and fiber parts
independently satisfy positive energy dissipation, the elastic deformation of
the matrix satisfies

−τMNEQ :
1

2
(L bM

e )(bM
e )−1 ≥ 0 (20)

and a similar argument is done for the fiber part. In Eq. (20), the rate of
change of the elastic deformation be is computed with the Lie derivative L .
Note that the energy dissipation involves the non-equilibrium Kirchhoff stress
τNEQ, conjugate to be. To close the system of equations, a rate equation is
needed to drive the update of be or Ci, depending on which one is used as
the internal variable. A suitable method to drive the evolution of the internal
variable is to introduce a dissipation potential Φ such that the rate of change
of be follows

−1

2
(L bM

e )bM
e

−1
=

∂Φ

∂τMNEQ

. (21)

A sufficient requirement on Φ is that it should be convex with respect to
τNEQ and Φ = 0 when τNEQ = 0. This is sufficient but not necessary [70].
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A general dissipation potential that works well for a variety of tissues was
proposed in [70],

ΦRG =
1

9ηV
(Iτ1 )

2 +
1

3ηD
((Iτ1 )

2 − 3Iτ2 ) , (22)

where ηV , ηD are two dissipation time scales, and Iτ1 , I
τ
2 are the first two

invariants of the non-equilibrium stress τMNEQ. For the anisotropic part, sim-
pler dissipation potentials are common [90](

λ̇F
i

λF
i

)
=

1

ηF
τFNEQ (23)

where ηF is a positive parameter that represents the characteristics viscosity
of the fiber, and τFNEQ is the non-equilibrium Kirchhoff stress in the fiber.

3.4. Experimental characterization

As mentioned at the beginning of the section, two main experimental
observations of viscoelasticity are creep and stress relaxation. Stress relax-
ation in particular is a popular testing method to determine parameters of
viscoelastic response experimentally [52, 42, 91]. An important control vari-
able during the experiments is consideration of strain rate [52, 92]. Other
methods include indentation, in particular for highly hydrated tissues which
are difficult to mount on uniaxial tension equipment such as brain [93, 94].
Cyclic loading can also be used to infer dynamic tissue properties [95].

4. Damage

Damage is another phenomenon that dissipates energy and reduces the
apparent stiffness of a material with respect to its virgin state [96]. A classical
treatment of damage is through the continuum damage mechanics framework
[97]. The concept of damage in a material is associated with the nucleation
of micro-cracks or voids in the material which reduce the stiffness without
an apparent plastic deformation [96]. A natural framework for describing
damage is to scale the virgin strain energy by a damage internal variable

Ψ = (1− d)Ψ0 , (24)
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where the notation Ψ0 is for the undamaged or virgin strain energy, and
d is the damage variable. Initially d = 0 and there is no damage. As damage
progresses, up to d = 1, energy is dissipated. For d = 1 there is complete
material degradation and failure. This scaling of the energy by a damage
variable is actually the same approach to fracture mechanics with the phase-
field method [98, 99]. There are other frameworks for modeling damage. For
soft materials, the observation of the Mullins effect in rubbers resulted in
pseudo-elastic frameworks to describe this behavior [100]. The Mullins effect
in rubbers is the observation that when rubber is stretched to a given total
deformation, returned to the initially undeformed state and loaded back again
to the same maximum deformation as before, the stress-stretch response of
the second loading cycle falls underneath the stress-stretch curve of the first
loading cycle. Furthermore, the amount of damage depends on the maximum
deformation only [101]. Because modeling of soft tissue mechanics follows
closely the advances in rubber mechanics, many of the models for rubber
damage have been applied to soft tissue [102, 103, 104, 105].

Following the energy approach from Eq. (24), the undamaged strain en-
ergy can still be modeled with any of the hyperelastic potentials as described
in previous sections, e.g. Eq. (7). The stress is also obtained as before but
with the scaling by the damage variable S = (1 − d)S0. The dissipation
inequality leads to an additional term that imposes a constraint on damage
dissipation, namely

Y ḋ ≥ 0 (25)

where Y = ∂Ψ/∂d is the thermodynamic conjugate variable to the dam-
age variable. In the case of Eq. (24), Y = Ψ0, the undamaged strain energy
is the driving force [97]. To link the damage evolution to the conjugate vari-
able, one approach similar to the introduction of a dissipation potential in
viscoelasticity, is a yield potential of the form G(Y ). If G(Y ) is convex and
the evolution of damage is proportional to its derivative ḋ ∝ ∂G/∂Y , then Eq.
(25) is satisfied. There is one important difference during damage compared
to other dissipation mechanisms such as viscoelasticity. In the viscoelastic
frameworks above, the internal variables can recover. Damage is modeled
as an irreversible behavior, requiring an additional constraint. Introducing
the damage history variable r = maxs∈(0,t](r0, Y ), with r0 the initial damage
threshold. In other words, r keeps track of the maximum value of the ther-
modynamic conjugate variable over the loading history. Thus, rather than
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evaluating the yield potential G(Y ), the yield criterion is actually given by

g(Y, r) = G(Y )−G(r) . (26)

In other words, Eq. (26) is used to keep track of whether or not the
deformation exceeds the previous level of damage. Damage evolution is then
given by the rate equation

ḋ = µ̇
∂g(Y, r)

∂Y
(27)

with µ̇ ≥ 0 a damage consistency parameter to ensure irreversible damage
via the Kuhn-Tucker relations

µ̇ ≥ 0, g(Y, r) ≤ 0, µ̇g(Y, r) = 0. (28)

Eq. (28) imposes a one-sided constraint so that ḋ ≥ 0, i.e. irreversibility
of the damage process. The only thing to close the system of equations is the
yield potential. In [97], the yield criteria is τ̄ =

√
Ψ0. For soft tissue, different

yield criteria, or equivalently, different d(Ψ0) have been proposed [106, 78,
107, 108]. For example, an exponential-type damage model developed for
tissues is of the form [108],

d(Y ) = 1− exp

(
β Y

α

)
, (29)

with α, β material parameters. Another proposed damage function for
collagen fibers is of the form [106]

d(Y ) = 1− 1− exp(µ[G(Y )− α])

1− exp(µ[β − α])
(30)

with µ, α, β material parameters, and G(Y ) a monotonic function to keep
track of the damage yield surface, for instance

√
Ψ0 as in [97].

Experimental characterization of damage behavior can be done via cyclic
loading at progressively higher deformation [63, 109, 52].

5. Multi-phasic behavior

Tissues are made up of multiple constituents. A ground substance of
different proteins is usually assumed as a soft isotropic material, with col-
lagen and elastic fibers treated as fiber reinforcements with much greater
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stiffness [78, 54]. Under these considerations, in the sections above, the tis-
sue is modeled as a solid, with microstructure approaches used to distinguish
between the contribution of each constituent. In some tissues, however, it
is not reasonable to assume the material behaves only as a solid. Instead, a
mixture of solid and fluid phases is needed, just like in other soft material
systems e.g. hydrogels or saturated soils [110, 111]. Following the saturated
poroleasticity theories as applied to soft tissue [24], we start by modifying
the balance equations introduced above. Momentum balance leads to a two
field equation. First, linear momentum balance states

∇ · σ = 0, (31)

with σ the stress tensor which now depends on two fields, the displacement
of the solid u, and a fluid pressure field pf , such that the total stress is
decomposed as

σ = −pfI + σe . (32)

In Eq. (32), the elastic stress σe is, just as before, computed from the hy-
perelastic or viscoelastic models already established above. The introduction
of the new field pf implies the need for another balance equation. Indeed,
mass balance of the fluid, due to its motion relative to the solid, leads to

∇ · v = 0 , (33)

where the velocity v of the fluid relative to the solid has been introduced.
The relative fluid velocity is coupled to the pressure field via Darcy’s law

w = −k · ∇pf , (34)

with k the hydraulic conductivity tensor [112]. In principle, the Eqs. (31)-
(34) close the system of equations (given a strain energy to compute the
elastic stress). One important consideration is that the deformation of the
solid actually leads to changes in hydraulic conductivity, and the tensor k
should not be treated as a constant. Intuitively, as pores are closed when
the material is compressed, the conductivity should decrease, and vice-versa.
Several coupling models between the fluid transport and the solid deforma-
tion have been introduced, with the Holmes-Mow model a popular one for
cartilage and subcutaneous tissue [77, 113, 114],
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k(J) = k0

(
J − φs

r

1− φs
r

)α

e
1
2
M(J2−1) , (35)

where k0 is the initial permeability, φs
r is the initial solid volume fraction,

α and M are two material parameters, and J = detF is the volume change.
Generalizations of the hydraulic conductivity dependence on tissue anisotropy

and anisotropic deformations has also been explored, particularly for carti-
lage [115, 60].

In addition to cartilage, poroelasticity is also central to the behavior of
subcutaneous tissue, particularly during drug delivery [27, 116, 117]. Re-
cently, poroelastic frameworks have been applied to brain tissues [118, 119],
lung [120, 121], among other organs [59, 93].

Experimentally, multi-phasic behavior can be characterized through con-
fined compression [24]. During confined compression, fluid is forced out of
the tissue, offering an opportunity to determine the transport properties (hy-
draulic conductivity), in addition to the solid phase properties. Alternatively,
a combination of tests can be done to separately determine fluid transport
parameters and elastic stress parameters [122]. Fluid exchange between tis-
sue and a fluid bath can also be controlled by changing the osmolarity of
the bath, offering another avenue to determine multi-phasic properties [59].
Lastly, indentation is also a suitable method for determination of biphasic
properties [123].

6. Active materials

Many soft tissues have a mechanical support role, but we also have tissues
in our bodies that are able to generate motion, namely muscle tissue [8].
There are three main kinds of muscle tissue: skeletal, cardiac, and smooth
[124]. In addition, even tissues that traditionally have a support role, are
under some amount of residual tension that ultimately can be explained from
cellular activity at the microscale: fibroblasts, the most common connective
tissue cell type, pulling on the extracellular matrix (ECM) [35]. Therefore,
some models explaining residual stress in soft tissues that are not regarded
as active as muscle do still consider some active stress contribution [125].
Muscle and active forces from fibroblasts are very different at the microscale,
but at the continuum scale they can be similarly incorporated. The main
method is to consider the total stress as a combination of passive and active
components
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σ = σe + σa (36)

where σa denotes an active component that does not appear from a strain
energy density function (although it can also be framed in an energy frame-
work [126]). The split can be pulled back to the reference configuration to
obtain either the nominal stress P or the second Piola Kirchhoff stress S.
However, unlike the passive or elastic stress, the active stress is naturally
associated with the current configuration,

σa = taa⊗ a (37)

with the active traction ta primarily along the current fiber direction a
in the deformed configuration. Eq. (37) thus describes active forces primar-
ily along fiber direction. For skeletal and cardiac muscle there are preferred
alignment of muscle fibers that drive the motion along a particular orienta-
tion and Eq. (37) is a good model of active tension. However, if there is no
preferred fiber direction, or if there is some dispersion in the fiber orienta-
tion, then a structural tensor accounting for dispersion can be used instead
of a ⊗ a, or a micro-sphere approach [35, 127]. While the anatomy and bi-
ology of different tissues is not covered in detail in this review, it is worth
mentioning that for muscle tissue, the main active unit is called the sarcom-
ere, a contractile unit on the order of 1− 3µm. Sarcomeres have overlapping
acting a myosin filaments. The myosin filaments have protrusions or heads
that form transient bridges to the actin filaments, Upon electrical activation,
the myosin heads generate torque that moves the actin and myosin filaments
passed each other, generating contraction. Models of sarcomere biophysics
explain the dynamics of force generation [128]. Sarcomeres assemble into
myofibrils, which then form muscle fibers. Muscle fibers can assemble into
fascicles, which then compose the entire muscle [28]. Due to the high degree
of alignment, it is natural to express the active force in the direction of the
fiber a. In the heart, the fibers are much shorter than in skeletal muscle,
but they still do show a preferential alignment, although, compared to skele-
tal muscle, the fibers in the heart show much greater variation from point to
point, that is, the vector field a(x) is highly heterogeneous albeit predictable.
For instance, heart muscle fibers have a helicoidal arrangement in the heart,
with the outer surface having fibers oriented −70o with respect to the ver-
tical axis (from the bottom of the heart to the top), and the inner surface
having alignment +90o [129]. Smooth muscle does not have a strong fiber
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alignment and produces isotropic or transversely isotropic stress that can be
captured with a suitable fiber distribution [130, 131]. Smooth muscle can be
found in the walls of arteries, along the airways, or in the uterus [132, 133].
Irrespective of the split of the stress into passive (elastic) and active parts,
the equilibrium equation is the same as before, ∇ · σ = 0.

The active traction ta is not constant, it is driven by electrical activity.
Because of this, active tissue behavior requires the solution of one more prob-
lem describing electrical activity [134]. The form of the electro-physiology
problem is that of reaction diffusion system

Φ̇−∇ · q = fΦ (38)

where Φ is the electrical potential, q is the electrical flux, and fΦ is a
source term. The flux follows standard dissipation

q = D∇Φ (39)

with conductivity tensor D. Muscle is assumed to obey a kinetic relation
between electrical activation and maximum loading. Even if there is some
electrical signal, the response is not instantaneous. A popular model by Nash
and Panfilov states [135],

ṫa = ϵ(Φ) (ka(Φ− Φr)− ta) (40)

where the active traction ta increases in time until it reaches the maximum
value ka(Φ−Φr). This maximum value states that when the muscle is actively
contracting it will exert a traction proportional to the potential difference
between the current potential Φ and a resting potential Φr. The function ϵ(Φ)
functions as a gating function, i.e. a Heaviside function which determines at
which threshold of the potential Φ the muscle will actually contract.

Thus, from Eq. (40) we get the coupling between the electrical potential
and the active traction. Eq. (38) provides the transport law for the electrical
potential, with a flux proportional to the gradient through an anisotropic con-
ductivity tensor with preference for the action potential propagation along
the fibers. The last part of the model we have to define is actually the one
with the richest history, the source term fϕ. This source term is what deter-
mines if the cells can have oscillatory response and self-excitation [136]. The
excitation fΦ can have a purely electrical term and also a stretch-induced
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opening of ion channels in the cell leading to a change in the electrical po-
tential fΦ = f e

Φ + fm
Φ . The purely electrical part can be modeled based on

[137],

f e
Φ = cΦ(Φ− α)(1− Φ)− rΦ (41)

where r is termed the recovery variable, and c and α are parameters.
The recovery variable r, itself obeys a differential equation dependent on Φ,
which is what allows for the rich dynamics. One possible coupling leading to
oscillations of the action potential is [137]

ṙ =

[
γ +

µ1r

µ2 + Φ

]
[−r − cΦ(Φ− b)] , (42)

with γ, µ1, µ2, c, b material parameters. The model introduced thus far to
describe cardiac electrophysiology is a relatively simplified model considering
a single field for the potential and single state variable for the source term.
More mechanistic models keep track of concentration of different ions and
their transport in the heart tissue coupled to the electrical potential [138,
129]. Significant amount of work has also been made to bridge models of
single cells to the tissue level Eq. (38) again through the source term [139,
140].

7. Growth, remodeling, wound healing

The most unique aspect of soft materials is perhaps their ability to adapt
over time to mechanical input by adding mass, changing their shape, or
changing their composition and mechanical properties [33]. The process by
which cells translate mechanical signals from outside of the cell to chemical
reactions and eventually gene expression and cell activity, is called mechan-
otransduction [141]. The field of study of how cells sense and react to me-
chanical load and modify their ECM is called mechanobiology [142]. The
literature distinguishes between two main forms of adaptation: growth is
commonly associated with a change in mass [36]; remodeling is associated
with a change in mechanical properties due to ECM structure changes [125].

7.1. Growth

There are two main theories to model growth, a kinematic one and one
based on reactive mixtures [34, 36].
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The kinematic approach to model growth follows the multiplicative split
of the deformation gradient into elastic and growth contributions similar to
plasticity [143]

F = FeFg (43)

Again, similar to plasticity, it is assumed that Fe contains the deforma-
tion from an infinitesimal stress-free volume to the current state. Because
the tensor Fe restores an infinitesimal volume to a stress free configuration,
the strain energy is only a function of this deformation Ψ(Fe). Any of the
hyperelastic strain energy functions defined so far can be used to model this
response. Unlike traditional plasticity, Fg does not measure a defect motion
(e.g. dislocations), but rather addition of mass [144]. In fact Jg = det(Fg) is
the volume change due to a change in mass at constant stress-free density ρ0.
Mechanical equilibrium is the same as always ∇ · σ = 0. The multiplicative
split introduces an internal variable in Fg, and thus we need an evolution
equation to specify its rate of change Ḟg. Further assumptions regarding the
growth tensor are commonly introduced. For instance, for isotropic growth,
i.e. mass is added in all directions equally, the growth tensor can be expressed
with a single scalar field ϑg,

Fg = ϑI , (44)

whereas for growth in a particular plane defined by a normal N or growth
along a fiber direction a0, the growth tensor can also be reduced to scalar
fields [145]

Fg = ϑgI+ (1− ϑg)N⊗N

Fg = I+ (ϑg − 1)a0 ⊗ a0 .

Through the definition of the growth tensor in terms of a scalar field, then
the evolution of growth can be done with a rate equation for a scalar rather
than a tensor field, avoiding issues with objectivity and frame indifference.
The rate of change of the internal variable ϑg is usually coupled to mechanical
input but this is not always the case. The growth can be morphogenetic,
for example during development, in which case it is an uncoupled model
from mechanical input ϑ̇g = α. Constant growth rate means for example
linear growth ϑg = αt + 1 with the assumption of initial condition ϑg(0) =
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1. Linear growth is observed in some system which grow relatively slowly
[146]. However, many biological systems are governed by cell population
dynamics with exponential growth. In such case the growth would have an
exponential increase. To avoid unbounded growth, logistic growth models
can be used in order to saturate the growth response due to, for instance,
nutrient limitations [147].

The most interesting observations regarding tissue growth is when this
process is tightly coupled to mechanical input. The most intuitive example
is the build up muscle with exercise [148]. An example of maladaptation
is thickening of the heart due to hypertension [149]. To couple growth to
mechanical cues there are two main alternatives: to couple to stress or to
strain. Either one of these metrics can lead to an effective constitutive model
for ϑ̇g. For example, coupling to stress [148]

ϑ̇g =
1

τg

[
ϑg
max − ϑg

ϑg
max − 1

]
(trMe −M e

crit) (45)

with τg a characteristic time constant for the growth process, the param-
eter ϑg

max preventing unbound growth and serving the role of logistic terms
that control maximum density of cell populations, and the parameter M e

crit

a critical stress triggering growth, i.e. a target or homeostatic stress. The
tensor Me is the Mandel stress Me = CeSe with Ce = Fe⊤Fe the elastic
right Cauchy Green deformation tensor, and Se = FgSFg⊤ the second Pi-
ola Kirchoff stress pushed to the intermediate configuration. The choice of
Mandel stress is because it is work-conjugate to the growth velocity gradient
Lg = ḞgFg−1, and a proper relationship between this stress measure and the
growth velocity gradient is needed for energy dissipation [105].

In some systems, it is convenient to express the growth rate in terms of
elastic kinematic variables. For example for skin, in the context of tissue
expansion, growth rate can be coupled to elastic area changes [150, 151].
Tissue expansion is a technique in reconstructive surgery to grow new skin
in situ with properties similar to adjacent tissue [152]. In tissue expansion,
a balloon-like device is inserted subcutaneously and inflated gradually with
saline solution, stretching the skin and triggering its growth [153]. Intu-
itively, stretching the skin chronically beyond a physiological state induces
growth of new skin. This happens naturally in pregnant women and when we
gain weight. Clinically, the tissue expansion process is kinematically driven.
The surgeons control the volume of inflation [154, 155]. Becuase of the kine-
matic control, the growth rate can be expressed as a function of the elastic
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deformation [150]

ϑ̇g = kg(ϑ
e − ϑg

crit) (46)

with the elastic area change ϑe = ||(cofFe)N||.
Driven by stress or strain, the growth formulations introduced so far

remain largely phenomenological. This is because they ignore the cellular
process of mechanotransduction. A more detailed description of the growth
process is through reactive mixtures [34, 156]. In this framework, the focus
is on the constituents that make up the tissue. For instance, keeping track
of mass fractions of collagen, elastin, GAG proteins, etc [34, 157, 158].The
mass fractions of different constituents are denoted ρi, which satisfy a joint
mass transport equation

ρ̇i +∇ · (viρi) = mi , (47)

where vi is the velocity of constituent i, and mi the mass production rate
of each constituent. The mi can be functions of the different ρi, specifying
reactions or conversions between different species.

The linear momentum balance of the mixture is the standard equilibrium
equation, ∇ · σ = 0, but with the stress being a sum of the stress from each
constituent

σ =
∑

σi . (48)

There is a constraint equation that relates the momentum exchange be-
tween different constituents∑

(pi +mivi) = 0 , (49)

where pi is the momentum exchange between constituent i and all other
constituents [159]. The last part of the theory in order to encode either
residual stress or stress relaxation due to growth is that new materials might
be placed under some pre-tension by cells. The deformation of each individual
constituent needs to be computed with respect to its own stress-free or natural
configuration [160],

Ft
i = FFn−1

i Gi , (50)

with Ft
i the total deformation of constituent i at time t, F the deformation

gradient with respect to some specified reference state, Fn−1
i the deformation
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between the reference state and the state of the solid when the material i was
deposited, and Gi the pre-tension of material i at the time it was deposited.
Even when no pre-strain is assumed at the time of material depositionGi = I,
growth or residual stress can occur if there is some deformation F ̸= I and
materials are deposited and degraded continuously in time.

While more detailed, mixture theory still uses phenomenological descrip-
tions such as a homeostatic stress or a state of pre-tension in newly de-
posited material Gi [161]. One problem with the mixture theory approach is
computational cost [162]. Although, with some assumptions, computational
efficiency can be improved [163].

Recent efforts have focused on removing phenomenological assumptions in
favor of even more detailed coupling to the cell scale, through multiscale mod-
els [164, 35]. Intermediate solutions between multi-scale model and purely
phenomenological is to develop homogenized theories akin to what is done
in micromechanics, for example [165].

7.2. Tissue remodeling

Remodeling is usually treated as a change in properties of the tissue with-
out changing mass. For example, fiber reorientation is a classical example
of remodeling [125]. By fiber reorientation it is meant here a permanent
change in the fiber orientation at the stress-free state, as opposed to reorien-
tation of fibers due to deformation [166]. The main assumption is that fibers
tend to align themselves to the eigenvectors of the deformation tensor [167].
Given fibers initially in the direction a0, their orientation in the reference
configuration evolves in time according to [168]

ȧ0 = λ1

(
2πϕ̇+

τω

)
(I− a0 ⊗ a0)e1 , (51)

where λ1, e1 are the largest eigenvalue and corresponding eigenvector. Eq.
(51) shows that alignment is in the direction of the eigenvector e1 propor-
tional to the stretch λ1 but also proportional to the rate of collagen remod-
eling ϕ̇+ scaled by a characteristic time τω. Reorientation can be applied
independently to a collection of fibers in a micro-sphere approach. Alterna-
tively, an efficient way of characterizing re-orientation of a fiber distributions
is to define an evolution equation for fiber dispersion [169]

κ̇ =
ϕ̇+

τκ

(
1

3

λγκ
2

λγκ
1

− κ

)
(52)
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which is also proportional to collagen turnover rate scaled by a possibly
different time constant τκ, and tending toward the ratio of the first two
eigenvalues with a power law parameterized by γκ. If the first two principal
eigenvalues become equal then at least there is a plane of loading in which the
deformation is equi-biaxial, in which case the fiber dispersion tends toward
a uniform dispersion κ → 1/3. In the case of uniaxial tension the dispersion
would show trend κ → (1/3)(1/λ3γk/2) → 0 as λ → ∞.

Although more computationally expensive, a more mechanistic model is
based on tracking individual fibers. For instance in [170, 171], deposition and
removal of indidividual fibers in different orientations is used to keep track
of the evolving fiber orientation distribution.

7.3. Wound healing

The equations used in wound healing modeling are almost the same as
already introduced above for growth and remodeling [172]. The reasoning
to split wound healing as a separate sub-section comes from the need to
couple the mechanical changes to biological field variables. In the previous
sub-sections for growth and remodeling, the evolution equations are coupled
directly to mechanical fields such as strain or stress. Wound healing, on
the other hand, involves a well-regulated cascade of cellular signaling that
culminates in new tissue creation out of an initial fibrin clot [173]. Such
complex process is not achievable without a control program, beyond a direct
coupling to the mechanical fields. Thus, even if the emphasis here is on
mechanics of soft tissue, insights on how tissue heals can guide self-healing
of synthetic materials in the near future. The biology control program can
be thought of as a blueprint for how a control system would look like for
rebuilding engineered materials autonomously.

The central control in wound healing is given by cell populations which
have reaction-diffusion with logistic growth and chemotaxis [173]. Mass bal-
ance is sought

ρ̇ = ∇ ·Qρ + sρ (53)

where ρ denotes a cell population. At least one cell population is needed
to describe wound healing. Fibroblasts are the key cell type that rebuilds
connective tissue [174, 175]. Other cell types in wound healing are epithelial
cells, for example kerationocytes in the epidermis [176]. Additional cell types
of interest are inflammation-related, e.g. macrophages or neutrophils [177,
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178]. In Eq. (53), Qρ is the flux and sρ is the source. The flux is further
defined as

Qρ = −Dρ(ϕ, c)∇ρ+Dρ,c∇c (54)

where the term proportional to ∇ρ is a diffusion-type term with diffusion
coefficient Dρ(ϕ, c) where it is now implied that this diffusion coefficient,
related to cell motility, has to be coupled to other signals such as collagen
ϕ and cytokines c. For instance, increasing collagen mass fraction can favor
cell motility and thus effective diffusivity [169] . The second term in Eq.
(54) is a chemotaxis term, an advection-type term that promotes cell motion
toward gradients of the chemical species c [179]. Here it can be seen already
that to drive the action of cell types ρ to do the healing process, at least
one initiator signal c is needed. When a tissue is injured, blood coagulates
through a chemical process involving thrombin and fibrin [180]. Platelets
from the blood get trapped in the wound site, undergo apoptosis, and release
chemical signals that trigger the wound healing program [181]. At least this
signal is needed in a mathematical modeling framework of wound healing.

The cytokine concentration satisfies standard advection-diffusion trans-
port equations

ċ = ∇ ·Qc + sc , (55)

similar to the cell population, but with flux just due to diffusion

Qc = −Dc∇c . (56)

To complete the basic control, the source terms need to be defined. For
the cells, logistic growth is assumed

sρ =

(
pρ + pρ,c

c

Kρ,c + c
+ pρ,eH(Ie)

)(
1− ρ

Kρρ

)
ρ− dρρ (57)

where the parameters pρ, pρ,c, pρ,e are for proliferation, with a saturation
term Kρ,c which prevents unbounded sensitivity of the cell proliferation with
respect to the chemical signal, while the saturation term Kρρ prevents un-
bounded cell population growth. The decay rate is dρ. Overall the logistic
growth states that cells will proliferate with initial exponential growth which
is slowed down by the term 1− ρ/Kρρ as ρ approaches the saturation value.
The cytokine term is a boost on proliferation with saturation response as
the cytokine concentration goes to Kρ,c. There is one additional coupling
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term which looks similar to the cytokine-induced proliferation. The produc-
tion term pρ,e, denotes mechanobiology coupling, i.e. induced proliferation in
response to mechanical cues captured through the mechanobiology function
H(Ie), described later.

The chemical concentration has a production linked back to the cell den-
sity:

sc = (pc,ρc+ pc,eH(Ie))

(
ρ

Kc,c + c

)
− dcc , (58)

the production by cells has a base rate of pc,ρ and a mechanobiology
induced rate pc,e with saturation Kc,c and decay rate dc. This basic control
system ensures that an initial signal in the wound given by spike in the
chemical c leads to a recruitment of cells from the surrounding tissue into
the wound. The chemical control is supplemented by the mechanobiological
control H(Ie) in terms of some invariant of the deformation Ie that can be
sensed by cells, either strain or a stress quantity (just as described in the
growth formulations) [172].

Finally, the coupling between this simple feedback control program and
the evolution of the tissue mechanics is needed. The coupling occurs in the
processes described already above: active stress, permanent deformation,
remodeling. For instance the cell density can contribute to a change in mass
fraction of the collagen

ϕ̇ =

(
pϕ + pϕ,c

c

Kϕ,c + c
+ pϕeH(Ie)

)(
ρ

Kϕ,ϕ + ϕ

)
− (dϕ + cρdϕ,c)ϕ , (59)

with base rate pϕ, cytokine rate pϕ,c, mechanobiological rate pϕe. Satu-
ration in production by the chemical is through the parameter Kϕ,c, while
saturation due to increased density of collagen itself is through Kϕ,ϕ. Colla-
gen is produced by fibroblast cells ρ and decays naturally at a rate dϕ but
also shows increased turnover in the presence of the chemokine with a rate
dϕ,c.

The plastic deformation rate and remodeling of the fiber orientation is the
same as previously introduced. Finally, the system is closed by defining the
feedback between the mechanics and the cell action in the mechanobiology
sensing term

H(Ie) =
1

1 + exp(−γe(Ie − ϑe))
, (60)
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with parameters γe, ϑ
e. Other models of mechanobiology can be used,

with more detailed description of cell adhesion and cell-ECM interface [165,
35].

8. Emerging focus: data-driven modeling

Most tools, both experimental and computational, are either very power-
ful or very versatile, but not both. Tools that perform very well on a given
task do so because they have been custom-made for that task, with the draw-
back that their use is limited to that specific task. On the other hand, tools
that can handle a large variety of tasks typically do not perform exceptionally
well on any of them. Machine learning in computational mechanics is chang-
ing this view, by enabling unparalleled flexibility to model complex tissue
behavior, all while keeping a very similar array of linear algebra operations
with some nonlinear filters. Machine learning offers a variety of tools for con-
stitutive modeling that are extremely powerful and yet flexible enough to be
applied to a vast number of tissues, including elastic and inelastic response.

In constitutive modeling of soft tissue, the macroscopic culminations of
all the processes and interactions that take place at the microscopic scale in a
tissue under mechanical loading are abstracted in terms of a few mathemat-
ical descriptors. Traditionally, these mathematical models are developed by
observing the general characteristic behaviors of a material, establishing an
appropriate theoretical framework and identifying specific functional forms
of the constitutive relation [182]. However, research from the past decade
shows that data-driven methods can largely automate this process and de-
liver better performance than human-made models. This is not a surprising
outcome, as representing such a sophisticated set of processes requires highly
expressive mathematical models, and machine learning methods such as neu-
ral networks are famously known as universal approximators [183].

In hyperelasticity this abstraction is usually in the form of the strain
energy density function (SEDF) (See (1)). The SEDF is a potential function
that accounts for the way in which a material stores external work as elastic
energy, and releases it upon unloading. A large number of closed-form SEDFs
similar to (6) and (7) are proposed in the literature [184], and yet, there is
no consensus on the choice of a material model, even for a specific material
like skin [185]. This is largely due to the closed-form nature of such models,
which inhibits their flexibility. Machine learning-based SEDFs have been
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shown to capture mechanical behavior better than closed-form models for
soft tissues from multiple species [186, 187].

Recently, data-driven models of hyperelasticity have been proposed that
satisfy physics-based constraints such as polyconvexity by design. This char-
acteristic enables these models to learn material response better with a small
amount of training data, avoid overfitting, and extrapolate beyond the train-
ing region. Polyconvexity is a criterion for existence of energy minimizers
in elasticity [188] and imposition of this criterion also helps with the numer-
ical stability of the models in Newton-type solvers (such as in most finite
element method packages) [189]. Polyconvex data-driven SEDFs have been
constructed from neural ordinary differential equations [190] and input con-
vex neural networks [191]. Some other studies leverage the findings from
the history of constitutive material modeling in machine learning algorithms
to conduct automated systems identification [192, 193]. Irrespective of the
approach, most polyconvex data-driven models can learn material behav-
ior extremely well, while displaying reasonable extrapolation capacity at the
same time [194].

Data-driven modeling of inelastic behavior such as viscoelasticity and
damage shows a similar pattern. Over the years, various approaches for mod-
eling viscoelastic behavior have been proposed that range from simple black
box models with no incorporated physical knowledge to highly interpretable
data-driven frameworks where the relevant physical constraints are satisfied
a priori [195]. For example, in [196], viscoelastic behavior of materials under
cyclic loading is learned in the frequency domain by a data-driven model. The
authors of [197] use a neural networks to learn the relationship between stress
and strain increments. More recently, the predominant approach to modeling
viscoelasticity has consisted of learning physics-constrained SEDFs and dissi-
pation potentials within the theory of nonlinear viscoelasticity [89, 198, 199].
In parallel to purely data-driven approaches, some studies have focused on
identifying the governing viscoelastic law from a library of existing consti-
tutive forms [200, 201]. Similarly, damage in soft materials can be modeled
using a variety of data-driven methods [202, 203].

Multiscale modeling is another area of soft tissue mechanics that stands
to benefit significantly from the introduction of data-driven methods. Mul-
tiscale modeling refers to the analysis of material response at large scales
(macroscale) by considering the behavior from smaller scales (microscale)
[204]. The most common approach for multiscale analysis of heterogeneous
materials is the FE2 method [205], which involves performing finite element
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analysis on a representative volume element (RVE) of the microscale for each
point in the macroscale. FE2 is an extremely costly analysis method, and a
popular method for accelerating multiscale analysis is to learn and predict
RVE behavior using artificial neural networks, in a process known as sur-
rogate modeling [206, 207]. Once the artificial neural networks have been
trained with sufficient RVE data, the microscale analysis takes insignificant
amount of time as it only involves a single forward-pass of the neural net-
work. For example, in [208] a fully connected neural network (FCNN) was
trained with a large dataset of discrete fiber network RVEs and used to pre-
dict the mechanical behavior of biopolymer gels at the macroscale. In [209],
the homogenized response of cubic lattice metamaterials is represented by
artificial neural networks, and in [210] neural networks are used to learn the
yield function of foams after training with RVE data. In [211], the authors
develop an efficient data collection scheme which minimizes the number of
microscale simulations required. The method is applied to a fiber reinforced
composite with a highly nonlinear mechanical behavior.

In summary, while sticking to the fundamental continuum mechanics the-
ories outlined here, machine learning methods are uniquely powerful to elim-
inate the need for closed-form constitutive equations. In particular, the role
of data-driven methods to connect multiple types of data (microstructure in-
formation and macroscale response for instance) cannot be understated. An
active research effort is to increase interpretability of data-driven frameworks
[212]. Another important focus area of research today is generative artificial
intelligence and uncertainty analysis in the context of soft tissue modeling
[213].

9. Outlook

Soft tissues are unique with respect to other engineered materials. They
have extreme mechanical behavior that cannot be described with linear the-
ories. The starting point in this chapter was hyperelasticity, in order to first
of all account for the large deformation regime in which all soft tissues op-
erate. We built in complexity from there because soft tissues show a variety
of physical phenomena such as viscoelastic energy dissipation and damage
energy dissipation. Tissues are hydrated and sometimes the fluid flow with
respect to the solid matrix is important, for instance in cartilage biomechan-
ics or subcutaneous drug delivery. Therefore, we also covered core aspects of
multiphasic theory. One of the most unique aspects of tissues is their ability
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to generative force and in that way induce locomotion or sustain the beating
of the heart. Modeling of muscle tissues active mechanical behavior requires
further coupling between mechanical equilibrium and electrical transport.
Another unique aspect of soft tissue modeling is their ability to grow, re-
model and heal. Modeling these phenomena typically requires coupling field
equations from mechanics with biological models. The coupling can be with
either kinematic approaches or mixture approaches. The theories covered
here are rooted in traditional continuum mechanics models of other soft ma-
terials. Yet, as can be seen throughout the chapter, special considerations
for soft tissue modeling are needed, which was the central driving force of
this chapter. The field of tissue biomechanics has evolved over more than
half a century, and now is a good time to step back and note the balance
principles, biological rules, and constitutive models that have been developed
for soft tissue. We provided both the general theoretical setting but also gave
specific examples of constitutive models developed for specific tissues. We
anticipate that this chapter will thus be a reference for those with at least
a basic continuum mechanics background interested in modeling tissue, to
become familiar with the key physical and biological phenomena usually at
play in tissue mechanics, and to get a hand on some of the most common
models used currently in the field.

Looking toward the future, the last section of this chapter is centered on
data-driven constitutive modeling. Machine learning (ML) and artificial in-
telligence (AI) are reshaping entire engineering fields [212]. Even though for
each section we introduced closed form models for each of the physical phe-
nomenon of interest, data-driven tools such as artificial neural networks and
Gaussian process regression allow description of constitutive models with-
out explicit analytical forms, giving these approaches much more flexibility
and ultimately higher accuracy without a priori assumptions. The time is
right for these methods because of the extensive amounts of data gathered in
over fifty years of soft tissue characterization research, Nevertheless, obvious
concerns are the lack of interpretability and the need to impose physics con-
straints [192, 194]. These are active areas of investigation that are going to
define how, with ever increasing amounts of data, we can build trustworthy
ML and AI tools for greater basic science and clinical impact.

Lastly, it should be noted that all soft tissues have received equal attention
over the years. Due to the high prevalence of cardiovascular disease, it is not
surprising that these tissues have received a significant amount of attention
[214]. More recently, focus has shifted to some previously understudied soft
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tissues. For instance, reproductive tissue biomechanics has only come to the
forefront in the last decade [215, 216]. Brain has also received progressively
more attention in recent years. Even though some aspects of brain tissue
biomechanics related to traumatic brain injury have been studied for a greater
period of time [217], other aspects of brain mechanics, such as mechanical
degradation and shrinkage in neuro-psychiatric disease, are only recent areas
of investigation [218, 219]. Lastly, the COVID pandemic also highlighted the
limited knowledge of pulmonary biomechanics with regards to constitutive
modeling of this soft tissue, particularly in the context of infection [220, 221,
222]. We anticipate that these tissues will continue to be at the forefront of
soft tissue mechanics research.
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[189] D. Balzani, P. Neff, J. Schröder, G. Holzapfel, A polyconvex frame-
work for soft biological tissues. Adjustment to experimental data, In-
ternational Journal of Solids and Structures 43 (20) (2006) 6052–6070.
doi:10.1016/j.ijsolstr.2005.07.048.

50



[190] V. Tac, F. S. Costabal, A. B. Tepole, Data-driven tissue mechan-
ics with polyconvex neural ordinary differential equations, Com-
puter Methods in Applied Mechanics and Engineering 398 (2022) 18.
doi:10.1016/j.cma.2022.115248.

[191] D. K. Klein, F. J. Roth, I. Valizadeh, O. Weeger, Parametrised poly-
convex hyperelasticity with physics-augmented neural networks (Jul.
2023). arXiv:2307.03463.

[192] K. Linka, E. Kuhl, A new family of Constitutive Artificial Neu-
ral Networks towards automated model discovery (Oct. 2022).
arXiv:2210.02202.

[193] M. Flaschel, S. Kumar, L. De Lorenzis, Unsupervised discov-
ery of interpretable hyperelastic constitutive laws, Computer Meth-
ods in Applied Mechanics and Engineering 381 (2021) 113852.
doi:10.1016/j.cma.2021.113852.
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tive study on different neural network architectures to model inelastic-
ity, International Journal for Numerical Methods in Engineering (2023)
nme.7319doi:10.1002/nme.7319.

[196] H. Salahshoor, M. Ortiz, Model-Free Data-Driven Viscoelasticity in the
Frequency Domain (May 2022). arXiv:2205.06674.

[197] K. Xu, A. M. Tartakovsky, J. Burghardt, E. Darve, Learning viscoelas-
ticity models from indirect data using deep neural networks, Computer
Methods in Applied Mechanics and Engineering 387 (2021) 114124.
doi:10.1016/j.cma.2021.114124.

[198] F. As’ad, C. Farhat, A mechanics-informed deep learning frame-
work for data-driven nonlinear viscoelasticity, Computer Meth-
ods in Applied Mechanics and Engineering 417 (2023) 116463.
doi:10.1016/j.cma.2023.116463.

51



[199] M. Rosenkranz, K. A. Kalina, J. Brummund, W. Sun, M. Kästner,
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