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Some materials exhibit a time-dependent mechanical behavior. If any material is deformed it will develop internal
stresses in response to this deformation. In a material like steel, the stresses will remain constant through time,
whereas some other materials, say polymers, will gradually ’relax’ resulting in reduced stress over time. This is
known as ’viscoelasticity’ [1]. Most soft tissues in our body and most polymers, especially rubber, show viscoelastic
behavior. Accurate modeling of the viscoelastic behavior of these materials is extremely important for a number of Myocardium
applications in the frontiers of science such as personalized surgery (2| and soft robotics [3].

Brain tissue

Existing models of viscoelasticity use closed-form expressions to model viscoelastic behavior |1, 4]|. This approach
severely lacks flexibility, because a given closed-form expression is limited only to a specific range of behaviors. On
the other hand, data-driven models are formless; they can mimic any behavior if the model is large enough [5].
Using data-driven methods can result in highly flexible models as has been illustrated for a number of applications
including in modeling the hyperelastic (6, 7| and plastic [8] behavior of materials. However, blindly using data-
driven methods in our models without a thorough consideration of the underlying physics is a recipe for disaster Rubber Blood clots
9]. The question then becomes, can we use data-driven methods to model viscoelasticity in a way that physical

constraints are always satisfied? We solve this problem by developing models of viscoelasticity using Neural ODEs;  Fig. 1: Some .examples of viscoelastic
a new machine learning algorithm with some interesting properties. materials.

The mechanical behavior of viscoelastic materials is subject to a few

physics-based constraints such as objectivity, material symmetries,

Obi - - Pol i polyconvexity, and most crucially, the second law of Thermodynamics.
J ecti VIty oryconvexity The second law of Thermodynamics states that for any state of stress at

a point, the deformation of the material has to be such that the

an IaW Of Thel“ nmao d}fﬂaml. CS dissipation of energy is always positive!

. The dissipation of energy in viscoelastic materials is governed by a
Th d . - Material symmetr Y function known as the dissipation potential. It can be shown that to
erimodaynamic consistency guarantee positivity of dissipation, the dissipation potential has to
satisfy some criteria, most importantly it must be a convex function of

the stress [10].

Our approach is based on 3 key ideas: Outputs of a Neural ODE are defined as the 77— . Randomized Neural
solutions of an Ordinary Differential Equation (ODE) ODE-based models
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guarantee positivity of dissipation. map of a Neural ODE is monotonic! (2" law of Thermodynamics)
Fig. 2: How are Neural ODEs always monotonic? Fig. 3: The Neural ODE-based models

always predict positive dissipation.

We train and test the Neural ODE-based models with experimental data obtained from various synthetic and biological materials like human myocardium
and rubber. The data are obtained under stress relaxation experiments.
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Fig. 4: Stress relaxation experiments. Fig. 5: Modeling stress relaxation behavior of various materials with Neural ODEs.
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