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Some materials exhibit a time-dependent mechanical behavior. If any material is deformed it will develop internal
stresses in response to this deformation. In a material like steel, the stresses will remain constant through time,
whereas some other materials, say polymers, will gradually ’relax’ resulting in reduced stress over time. This is
known as ’viscoelasticity’ [1]. Most soft tissues in our body and most polymers, especially rubber, show viscoelastic
behavior. Accurate modeling of the viscoelastic behavior of these materials is extremely important for a number of
applications in the frontiers of science such as personalized surgery [2] and soft robotics [3].
Existing models of viscoelasticity use closed-form expressions to model viscoelastic behavior [1, 4]. This approach
severely lacks flexibility, because a given closed-form expression is limited only to a specific range of behaviors. On
the other hand, data-driven models are formless; they can mimic any behavior if the model is large enough [5].
Using data-driven methods can result in highly flexible models as has been illustrated for a number of applications
including in modeling the hyperelastic [6, 7] and plastic [8] behavior of materials. However, blindly using data-
driven methods in our models without a thorough consideration of the underlying physics is a recipe for disaster
[9]. The question then becomes, can we use data-driven methods to model viscoelasticity in a way that physical
constraints are always satisfied? We solve this problem by developing models of viscoelasticity using Neural ODEs;
a new machine learning algorithm with some interesting properties.

Background
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The mechanical behavior of viscoelastic materials is subject to a few
physics-based constraints such as objectivity, material symmetries,
polyconvexity, and most crucially, the second law of Thermodynamics.
The second law of Thermodynamics states that for any state of stress at
a point, the deformation of the material has to be such that the
dissipation of energy is always positive!
The dissipation of energy in viscoelastic materials is governed by a
function known as the dissipation potential. It can be shown that to
guarantee positivity of dissipation, the dissipation potential has to
satisfy some criteria, most importantly it must be a convex function of
the stress [10].

Physical constraints in viscoelasticity

We use Neural ODEs to enforce the 2nd law of Thermodynamics

I. Neural ODEs are monotonic.

If the derivative of a function is
monotonic, the function itself is convex.

II.

Convex functions can be used to
guarantee positivity of dissipation.

III.

Our approach is based on 3 key ideas:

Inputs
of Neural ODE

Outputs
of Neural ODE

Outputs of a Neural ODE are defined as the
solutions of an Ordinary Differential Equation (ODE)
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But the solution trajectories
of an ODE never intersect
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This means, the input-output
map of a Neural ODE is monotonic!
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Fig. 2: How are Neural ODEs always monotonic?
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2 Random states of stress

All result in positive dissipation!
(2nd law of Thermodynamics)
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Counterexamples:
Ordinary neural networks
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The Neural ODE-based models
always predict positive dissipation.
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Modeling stress relaxation behavior of various materials with Neural ODEs.Fig. 5:

We train and test the Neural ODE-based models with experimental data obtained from various synthetic and biological materials like human myocardium
and rubber. The data are obtained under stress relaxation experiments.
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